【題目】在平行四邊形ABCD中,AC與BD相交于0,AE⊥BD于E,CF⊥BD于F,則圖中的全等三角形共( 。
A. 5對B. 6對C. 7對D. 8對
【答案】C
【解析】
由四邊形ABCD是平行四邊形,可得OA=OC,OB=OD,AB=CD,AD=BC,即可證得△ABD≌△CDB(SSS),△ABC≌△CDA,△AOD≌△COB(SAS),△AOB≌△COD,又由AC⊥BD,AE⊥BD,可得△AOE≌△COF,△ABE≌△CDF(AAS),△ADE≌△CBF.
∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD,AB=CD,AD=BC,
在△ABD和△CDB中,
,
∴△ABD≌△CDB(SSS),
同理:△ABC≌△CDA;
在△AOD和△COB中,
,
∴△AOD≌△COB(SAS),
同理:△AOB≌△COD,
∴∠ABO=∠CDO,
∵AC⊥BD,AE⊥BD,
∴∠AEO=∠CFO=90°,∠AEB=∠CFD=90°,
在△AOE和△COF中,
,
∴△AOE≌△COF(AAS),
在△ABE和△CDF中,
,
∴△ABE≌△CDF(AAS),
同理:△ADE≌△CBF,
綜上,全等三角形共有7對.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國道路交通管理條例》規(guī)定:小汽車在城街路上行駛速度不得超過70 km/h,如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路面車速檢測儀 A的正前方60 m處的C點,過了5 s后,測得小汽車所在的B點與車速檢測儀A之間的距離為100 m.
(1)求B,C間的距離.
(2)這輛小汽車超速了嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋子中裝有3個紅球和1個白球,這些球除顏色外都相同.
(1)從中隨機摸出1個球,記錄顏色后放回,攪勻,再摸出1個球.摸出的兩個球中,1個為紅球,1個為白球的概率為;
(2)從中隨機摸出1個球,記錄顏色后不放回,再摸出1個球.求摸出的兩個球中,1個為紅球,1個為白球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場統(tǒng)計了今年1﹣5月A、B兩種品牌冰箱的銷售情況,并將獲得的數(shù)據(jù)繪制成如圖折線統(tǒng)計圖:
(1)根據(jù)圖中數(shù)據(jù)填寫表格.
(2)通過計算該商場這段時間內(nèi)A、B兩種品牌冰箱月銷售量的方差,比較這兩種品牌冰箱月銷售量的穩(wěn)定性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,三角形ABC的頂點坐標(biāo)分別為,,,把三角形ABC向右平移2個單位長度,再向下平移4個單位長度后得到三角形.
(1)畫出三角形ABC和平移后的圖形;
(2)寫出三個頂點,,的坐標(biāo);
(3)求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD、BC是⊙O的兩條互相垂直的直徑,點P從點O出發(fā),沿O→C→D→O的路線勻速運動,設(shè)∠APB=y(單位:度),那么y與點P運動的時間x(單位:秒)的關(guān)系圖是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個三棱柱包裝盒,它的底面是邊長為10cm的正三角形,三個側(cè)面都是矩形.現(xiàn)將寬為15cm的彩色矩形紙帶AMCN裁剪成一個平行四邊形ABCD(如圖2),然后用這條平行四邊形紙帶按如圖3的方式把這個三棱柱包裝盒的側(cè)面進(jìn)行包貼(要求包貼時沒有重疊部分),紙帶在側(cè)面纏繞三圈,正好將這個三棱柱包裝盒的側(cè)面全部包貼滿.
(1)請在圖2中,計算裁剪的角度∠BAD;
(2)計算按圖3方式包貼這個三棱柱包裝盒所需的矩形紙帶的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖要求:Ⅰ、過直線外一點作這條直線的垂線;Ⅱ、作線段的垂直平分線;
Ⅲ、過直線上一點作這條直線的垂線;Ⅳ、作角的平分線.
如圖是按上述要求排亂順序的尺規(guī)作圖:
則正確的配對是( )
A. ①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B. ①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C. ①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D. ①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:方程組的解x為非正數(shù),y為負(fù)數(shù).
(1)求a的取值范圍;
(2)化簡|a-3|+|a+2|;
(3)在a的取值范圍中,當(dāng)a為何整數(shù)時,不等式2ax+x>2a+1的解為x<1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com