如圖,在Rt△ABC中,∠ACB=90°,AC=6㎝,BC=8㎝,P為BC的中點(diǎn).動(dòng)點(diǎn)Q從點(diǎn)P出發(fā),沿射線PC方向以2㎝/s的速度運(yùn)動(dòng),以P為圓心,PQ長(zhǎng)為半徑作圓.設(shè)點(diǎn)Q運(yùn)動(dòng)的時(shí)間為t s.
⑴當(dāng)t=1.2時(shí),判斷直線AB與⊙P的位置關(guān)系,并說(shuō)明理由;
⑵已知⊙O為△ABC的外接圓,若⊙P與⊙O相切,求t的值.
  
解:⑴直線與⊙P相切.

如圖,過(guò)點(diǎn)P作PD⊥AB, 垂足為D.
在Rt△ABC中,∠ACB=90°,∵AC=6cm,BC=8cm,
.∵P為BC的中點(diǎn),∴PB=4cm.
∵∠PDB=∠ACB=90°,∠PBD=∠ABC.∴△PBD∽△ABC.
,即,∴PD ="2.4(cm)" .
當(dāng)時(shí),(cm) 
,即圓心到直線的距離等于⊙P的半徑.
∴直線與⊙P相切.
⑵∠ACB=90°,∴AB為△ABC的外切圓的直徑.∴
連接OP.∵P為BC的中點(diǎn),∴
∵點(diǎn)P在⊙O內(nèi)部,∴⊙P與⊙O只能內(nèi)切.
,∴=1或4. 
∴⊙P與⊙O相切時(shí),t的值為1或4.
本試題主要是考查了圓內(nèi)的性質(zhì)的運(yùn)用,以及直線與圓的為何只關(guān)系 的綜合運(yùn)用。
(1)當(dāng)t=1.2時(shí),要判斷直線AB與⊙P的位置關(guān)系,只要求解圓心到直線的距離與圓的半徑的關(guān)系即可以得到。
(2)⊙O為△ABC的外接圓,若⊙P與⊙O相切,則可以考慮是相互外切還是相互內(nèi)切的情況,根據(jù)圓心距和半徑的關(guān)系得到
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC內(nèi)接于⊙O,AB=8,AC=4,D是AB邊上一點(diǎn),P是優(yōu)弧的中點(diǎn),連接PA、PB、PC、PD,當(dāng)BD的長(zhǎng)度為多少時(shí),△PAD是以AD為底邊的等腰三角形?并加以證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線與x軸、y軸分別相交于點(diǎn)A、B,與正比例函數(shù)的圖象相交于點(diǎn)C、D(點(diǎn)C在點(diǎn)D的左側(cè)),⊙O是以CD長(zhǎng)為半徑的圓。CE∥x軸,DE∥y軸,CE、DE相交于點(diǎn)E。
(1)△CDE是    ▲   三角形;點(diǎn)C的坐標(biāo)為    ▲   ,點(diǎn)D的坐標(biāo)為    ▲   (用含有b的代數(shù)式表示);
(2)b為何值時(shí),點(diǎn)E在⊙O上?
(3)隨著b取值逐漸增大,直線與⊙O有哪些位置關(guān)系?求出相應(yīng)b的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在半徑為5的⊙O中, 弦AB=6,OC⊥AB于點(diǎn)D ,交⊙O于點(diǎn)C ,則CD=           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某施工工地安放了一個(gè)圓柱形飲水桶的木制支架(如圖1),若不計(jì)木條的厚
度,其俯視圖如圖2所示,已知AD垂直平分BC,AD=BC=48cm,則圓柱形飲水桶的底面半徑的最大值
   ▲    cm.  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

有一個(gè)底面半徑為3cm,母線長(zhǎng)10cm的圓錐,則其側(cè)面積是    ▲   cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義:P、Q分別是兩條線段a和b上任意一點(diǎn),線段PQ長(zhǎng)度的最小值叫做線段與線段的距離.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四點(diǎn).
(1)根據(jù)上述定義,當(dāng)m=2,n=2時(shí),如圖1,線段BC與線段OA的距離是_____,
當(dāng)m=5,n=2時(shí),如圖2,線段BC與線段OA的距離(即線段AB的長(zhǎng))為______

(2)如圖3,若點(diǎn)B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.
(3)當(dāng)m的值變化時(shí),動(dòng)線段BC與線段OA的距離始終為2,線段BC的中點(diǎn)為M.
①求出點(diǎn)M隨線段BC運(yùn)動(dòng)所圍成的封閉圖形的周長(zhǎng);
②點(diǎn)D的坐標(biāo)為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值,使以A、M、H為頂點(diǎn)的三角形與△AOD相似,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若兩圓的半徑分別為2和4,且圓心距為7,則兩圓的位置關(guān)系為【   】
A.外切B.內(nèi)切C.外離D.相交

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△ABC內(nèi)接于⊙O,若∠OAB=25°,則∠C的度數(shù)為
A.25°B.50°C.65°D.75°

查看答案和解析>>

同步練習(xí)冊(cè)答案