【題目】定義:有一個內(nèi)角為90°,且對角線相等的四邊形稱為準矩形.
(1)①如圖1,準矩形ABCD中,∠ABC=90°,若AB=2,BC=3,則BD= ;
②如圖2,直角坐標系中,A(0,3),B(5,0),若整點P使得四邊形AOBP是準矩形,則點P的坐標是 ;(整點指橫坐標、縱坐標都為整數(shù)的點)
(2)如圖3,正方形ABCD中,點E、F分別是邊AD、AB上的點,且CF⊥BE,求證:四邊形BCEF是準矩形;
(3)已知,準矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,當△ADC為等腰三角形時,請直接寫出這個準矩形的面積是 .
【答案】(1)(2)(5,3),(3,5)(3);;
【解析】試題分析:(1)利用準矩形的定義和勾股定理計算,再根據(jù)準矩形的特點和整點的特點求出即可;
(2)先利用正方形的性質(zhì)判斷出△ABE≌△BCF,即可;
(2)分三種情況分別計算,用到梯形面積公式,對角線面積公式,對角線互相垂直的四邊形的面積計算方法.
試題解析:(1)①∵∠ABC=90,
∴BD=,
故答案為,
②∵A(0,3),B(5,0),
∴AB==6,
設(shè)點P(m,n),A(0,0),
∴OP==6,
∵m,n都為整數(shù),
∴點P(3,5)或(5,3);
故答案為P(3,5)或(5,3);
(2)∵四邊形ABCD是正方形,
∴AB=BC∠A=∠ABC=90°,
∴∠EAF+∠EBC=90°,
∵BE⊥CF,
∴∠EBC+∠BCF=90°,
∴∠EBF=∠BCF,
∴△ABE≌△BCF,
∴BE=CF,
∴四邊形BCEF是準矩形;
(3);;
∵∠ABC=90°,∠BAC=60°,AB=2,
∴BC=2,AC=4,
準矩形ABCD中,BD=AC=4,
①當AC=AD時,如圖1,作DE⊥AB,
∴AE=BEAB=1,
∴DE=,
∴S準矩形ABCD=S△ADE+S梯形BCDE
=DE×AE+(BC+DE)×BE
=×+(2+)×1
=+;
②當AC=CD時,如圖2,
作DF⊥BC,
∴BD=CD,
∴BF=CF=BC=,
∴DF=,
∴S準矩形ABCD=S△DCF+S梯形ABFD
=FC×DF+(AB+DF)×BF
=××+(2+)×
=+;
③當AD=CD,如圖3,
連接AC中點和D并延長,連接BG,過B作BH⊥DG,
∴BD=CD=AC=4,
∴AG=AC=2,
∵AB=2,
∴AB=AG,
∵∠BAC=60°,
∴∠ABG=60°,
∴∠CBG=30°
在Rt△BHG中,BG=2,∠BGH=30°,
∴BH=1,
在Rt△BHM中,BH=1,∠CBH=30°,
∴BM=,HM=,
∴CM=,
在Rt△DHB中,BH=1,BD=4,
∴DH=,∴DM=DH﹣MH=﹣,
∴S準矩形ABCD=S△DCF+S四邊形AMCD
=BM×AB+AC×DM
=××2+×4×(﹣)
=2;
故答案為;;.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黔東南州某校吳老師組織九(1)班同學(xué)開展數(shù)學(xué)活動,帶領(lǐng)同學(xué)們測量學(xué)校附近一電線桿的高.已知電線桿直立于地面上,某天在太陽光的照射下,電線桿的影子(折線BCD)恰好落在水平地面和斜坡上,在D處測得電線桿頂端A的仰角為30°,在C處測得電線桿頂端A得仰角為45°,斜坡與地面成60°角,CD=4m,請你根據(jù)這些數(shù)據(jù)求電線桿的高AB.
(結(jié)果精確到1m,參考數(shù)據(jù):≈1.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BP平分∠ABC,D為BP上一點,E,F分別在BA,BC上,且滿足DE=DF,若∠BED=140°,則∠BFD的度數(shù)是( 。
A. 40°B. 50°C. 60°D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市為了回饋廣大新老客戶,元旦期間決定實行優(yōu)惠活動.方案一:非會員購物所有商品價格可獲九折優(yōu)惠;方案二:交納元會費成為該超市的會員,所有商品價格可獲八折優(yōu)惠.
(1)若用(元)表示商品價格,請你用含的式子分別表示兩種購物方案所付的錢數(shù).
(2)當商品價格是多少元時,兩種方案所付錢數(shù)相同?
(3)若你計劃在該超市購買商品,請分析選擇哪種方案更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)的計算:
(1)1﹣(﹣8)+12+(﹣11);
(2)|﹣|;
(3)﹣12﹣(1﹣)×[6+(﹣3)3];
(4) ×(﹣6)2﹣5.5×8+25.5×8.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面關(guān)于x的方程中:①ax2+x+2=0;②3(x-9)2-(x+1)2=1;③x+3=④x2-a=0(a為任意實數(shù);⑤=x-1一元二次方程的個數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個口袋中放有290個涂有紅、黑、白三種顏色的質(zhì)地相同的小球.若紅球個數(shù)是黑球個數(shù)的2倍多40個.從袋中任取一個球是白球的概率是.
(1)求袋中紅球的個數(shù);
(2)求從袋中任取一個球是黑球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市計劃在“十周年”慶典當天開展購物抽獎活動,凡當天在該超市購物的顧客,均有一次抽獎的機會,抽獎規(guī)則如下:將如圖所示的圓形轉(zhuǎn)盤平均分成四個扇形,分別標上1,2,3,4四個數(shù)字,抽獎?wù)哌B續(xù)轉(zhuǎn)動轉(zhuǎn)盤兩次,當每次轉(zhuǎn)盤停止后指針所指扇形內(nèi)的數(shù)為每次所得的數(shù)(若指針指在分界線時重轉(zhuǎn));當兩次所得數(shù)字之和為8時,返現(xiàn)金20元;當兩次所得數(shù)字之和為7時,返現(xiàn)金15元;當兩次所得數(shù)字之和為6時返現(xiàn)金10元.
(1)試用樹狀圖或列表的方法表示出一次抽獎所有可能出現(xiàn)的結(jié)果;
(2)某顧客參加一次抽獎,能獲得返還現(xiàn)金的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)殖戶每年的養(yǎng)殖成本包括固定成本和可變成本,其中固定成本每年均為4萬元,可變成本逐年增長,已知該養(yǎng)殖戶第一年的可變成本為2.6萬元,設(shè)可變成本平均每年增長的百分率為
(1)用含x的代數(shù)式表示低3年的可變成本為 萬元;
(2)如果該養(yǎng)殖戶第3年的養(yǎng)殖成本為7.146萬元,求可變成本平均每年的增長百分率x.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com