【題目】平行四邊形的對角線相交于點,的外接圓交于點且圓心恰好落在邊上,連接,若.

1)求證:切線.

2)求的度數(shù).

3)若的半徑為1,求的長.

【答案】1)詳見解析;2;3

【解析】

1)連接OB,根據(jù)平行四邊形的性質得到∠BAD=∠BCD45°,根據(jù)圓周角定理得到∠BOD2BAD90°,根據(jù)平行線的性質得到OBBC,即可得到結論;

2)連接OM,根據(jù)平行四邊形的性質得到BMDM,根據(jù)直角三角形的性質得到OMBM,求得∠OBM60°,于是得到∠ADB30°;

3)連接EM,過MMFAEF,根據(jù)等腰三角形的性質得到∠MOF=∠MDF30°,根據(jù)OMOE1,解直角三角形即可得到結論.

1)證明:連接OB,

∵四邊形ABCD是平行四邊形,

∴∠BAD=∠BCD45°,

∴∠BOD2BAD90°,

ADBC,

∴∠DOB+∠OBC180°,

∴∠OBC90°,

OBBC,

BC為⊙O切線;

2)解:連接OM

∵四邊形ABCD是平行四邊形,

BMDM,

∵∠BOD90°,

OMBM,

OBOM,

OBOMBM

∴∠OBM60°,

∴∠ADB30°;

3)解:連接EM,過MMFAEF,

OMDM,

∴∠MOF=∠MDF30°,

的半徑為1

OMOE1

FM,OF,

EF1

EM==

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】20195月,以“尋根國學,傳承文明”為主題的蘭州市第三屆“國學少年強一國學知識挑戰(zhàn)賽”總決賽拉開帷幕,小明晉級了總決賽.比賽過程分兩個環(huán)節(jié),參賽選手須在每個環(huán)節(jié)中各選擇一道題目.

第一環(huán)節(jié):寫字注音、成語故事、國學常識、成語接龍(分別用表示);

第二環(huán)節(jié):成語聽寫、詩詞對句、經典通讀(分別用表示)

1)請用樹狀圖或列表的方法表示小明參加總決賽抽取題目的所有可能結果

2)求小明參加總決賽抽取題目都是成語題目(成語故事、成語接龍、成語聽寫)的概率。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=BCD=90°,∠B=45°DEACEABF,若BC=2CD,AE=2,則線段BF=______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是反比例函數(shù)y=(x0)圖象上一點,直線y=kx+b過點A并且與兩坐標軸分別交于點B,C,過點AADx軸,垂足為D,連接DC,若△BOC的面積是4,則△DOC的面積是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等邊的邊長為,頂點軸正半軸上,將折疊,使點落在軸上的點處,折痕為.是直角三角形時,點的坐標為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明代表學校參加我和我的祖國主題宣傳教育活動,該活動分為兩個階段,第一階段有歌曲演唱、書法展示、器樂獨奏”3個項目(依次用、、表示),第二階段有故事演講、詩歌朗誦”2個項目(依次用、表示),參加人員在每個階段各隨機抽取一個項目完成.

1)用畫樹狀圖或列表的方法,列出小明參加項目的所有等可能的結果;

2)求小明恰好抽中兩個項目的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點P,Q分別在邊ABBC的延長線上且BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQ⊥DP;②△OAE∽△OPA;③當正方形的邊長為3,BP=1時,cos∠DFO=,其中正確結論的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A1的坐標為(1,0,A2y軸的正半軸上,且∠A1A2O=30°,過點A2A2A3A1A2,垂足為A2,x軸于點A3,過點A3A3A4A2A3,垂足為A3,y軸于點A4;過點A4A4A5A3A4,垂足為A4,x軸于點A5;過點A5A5A6A4A5,垂足為A5,y軸于點A6;按此規(guī)律進行下去,則點A2017的橫坐標為(

A.B.0C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yx2+bxt的對稱軸為x2.若關于x的一元二次方程x2+bxt0在﹣1x3的范圍內有實數(shù)解,則t的取值范圍是(  )

A. 4t5B. 4t<﹣3C. t≥﹣4D. 3t5

查看答案和解析>>

同步練習冊答案