【題目】下列命題中,真命題的個(gè)數(shù)是( )

①過(guò)一點(diǎn)有且只有一條直線與已知直線平行;

②過(guò)一點(diǎn)有且只有一條直線與已知直線垂直;

③圖形平移的方向一定是水平的;

④內(nèi)錯(cuò)角相等.

A. 4B. 3C. 2D. 1

【答案】D

【解析】

根據(jù)平行公理、圖形的平移、平行線的性質(zhì)定理判斷即可.

解:過(guò)直線外一點(diǎn)有且只有一條直線與已知直線平行,所以①是假命題;
過(guò)一點(diǎn)有且只有一條直線與已知直線垂直,所以②是真命題;
圖形平移的方向不一定是水平的,所以③是假命題;
兩直線平行,內(nèi)錯(cuò)角相等,所以④是假命題;
故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器超市銷(xiāo)售A、B兩種不同型號(hào)的電風(fēng)扇,每種型號(hào)電風(fēng)扇的購(gòu)買(mǎi)單價(jià)分別為每臺(tái)310元,460元.

(1)若某單位購(gòu)買(mǎi)A,B兩種型號(hào)的電風(fēng)扇共50臺(tái),且恰好支出20000元,求A,B兩種型號(hào)電風(fēng)扇各購(gòu)買(mǎi)多少臺(tái)?

(2)若購(gòu)買(mǎi)A,B兩種型號(hào)的電風(fēng)扇共50臺(tái),且支出不超過(guò)18000元,求A種型號(hào)電風(fēng)扇至少要購(gòu)買(mǎi)多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是△ABC的高,E為AC上一點(diǎn),BE交AD于H,且有BH=AC,HD=CD.
求證:
(1)△BHD≌△ACD;
(2)BE⊥AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三位歌手進(jìn)入“我是歌手”的冠、亞、季軍的決賽,他們通過(guò)抽簽來(lái)決定演唱順序.

(1)求甲第一位出場(chǎng)的概率;

(2)求甲比乙先出場(chǎng)的概率.請(qǐng)用列表法或畫(huà)樹(shù)狀圖進(jìn)行分析說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠α∠β互余,∠α=35°18′,∠β=_____°_____′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:a2﹣a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景:

如圖(a,點(diǎn)A、B在直線l的同側(cè),要在直線l上找一點(diǎn)C,使ACBC的距離之和最小,我們可以作出點(diǎn)B關(guān)于l的對(duì)稱點(diǎn)B′,連接A B′與直線l交于點(diǎn)C,則點(diǎn)C即為所求.

1)實(shí)踐運(yùn)用:

如圖(b),已知,⊙O的直徑CD4,點(diǎn)A ⊙O 上,∠ACD=30°,B 為弧AD 的中點(diǎn),P為直徑CD上一動(dòng)點(diǎn),則BP+AP的最小值為

2)知識(shí)拓展:

如圖(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,EF分別是線段ADAB上的動(dòng)點(diǎn),求BE+EF的最小值,并寫(xiě)出解答過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P(﹣3,5)所在的象限是(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列語(yǔ)句:①全等三角形的周長(zhǎng)相等.②面積相等的三角形是全等三角形.③若成軸對(duì)稱的兩個(gè)圖形中的對(duì)稱線段所在直線相交,則這個(gè)交點(diǎn)一定在對(duì)稱軸上.④全等三角形的所有邊相等.其中正確的有( 。

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案