【題目】快、慢兩車分別從相距480千米路程的甲、乙兩地同時出發(fā),勻速行駛,先相向而行,途中慢車因故停留1小時,然后以原速度繼續(xù)向甲地行駛,到達甲地后停止行駛;快車到達乙地后,立即按原路原速返回甲地,(快車掉頭的時間忽略不計),快、慢兩車距乙地的路程y(千米)與所用時間x(小時)之間的函數(shù)圖象如圖.快車到達甲地時,慢車距離甲地__米.

【答案】60000.

【解析】

根據(jù)題意和函數(shù)圖象可以求得快車和慢車的速度,從而可以解答本題.

由題意可得,

慢車的速度為:480÷(9-1)=60千米/時,

a=(7-1)×60=360,

∴快車的速度為:(480+360)÷7=120千米/時,

∴快車返回甲地用的時間為:(480+480)÷120=8(小時),

∴當快車到達甲地時,慢車距離甲地:60×(9-8)=60km=60000m,

故答案為:60000.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】,則下列式子中錯誤的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,平分,點、分別是射線、上的動點(、不與點重合),連接交射線于點,設.

1)如圖1,若,則:

的度數(shù)為

②當時, ,當時,

2)如圖2,若,則是否存在這樣的的值,使得中有兩個想等的角?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將兩塊三角尺AOBCOD的直角頂點O重合在一起,若∠AOD=4BOC,OE為∠BOC的平分線,則∠DOE的度數(shù)為( 。

A. 36° B. 45° C. 60° D. 72°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,分別沿矩形紙片ABCD和正方形EFGH紙片的對角線AC,EG剪開,拼成如圖2所示的平行四邊形KLMN,若中間空白部分恰好是正方形OPQR

1)若AB=mBC=n,用含m、n的代數(shù)式表示正方形EFGH的邊長;

2)若正方形EFGH的面積為25,求平行四邊形KLMN的面積;

3)平行四邊形KLMN是否能為菱形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果商販用530元從批發(fā)市場購進桔子、蘋果、香蕉、荔枝各100千克,并將這批水果全部售出,下圖分別是桔子、蘋果、荔枝售出后的總利潤和四種水果售出的利潤率,根據(jù)所給信息,下列結論:

①香蕉的進價為每千克1.50元;

②桔子的進價與蘋果的進價一樣;

③四種水果的銷售額共有695元;

④若下一次進貨時的進價與進貨數(shù)量不變,且桔子、香蕉和荔枝的售價不變,要想四種水果的總利潤為175元,則蘋果的售價每千克應提高0.10元( .其中正確的結論是( )

A. ①②③

B. ①③④

C. ①④

D. ②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD內接于圓O,連接BD,∠BAD=105°,∠DBC=75°.

(1)求證:BDCD;

(2)若圓O的半徑為3,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,EF分別是正方形ABCD的邊CD,AD上的點,且CE=DF,AEBF相交于點O,下列結論:①AE=BF;②AEBF;③AO=OE;④SAOB=S四邊形DEOF其中正確的結論是(

A.①②④B.②③④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AEBCE,AFCDFBDAE、AF交于GH

1)求證:ABEADF;

2)若AG=AH,求證:四邊形ABCD是菱形.

查看答案和解析>>

同步練習冊答案