如圖:將一張矩形紙片ABCD的角C沿著GF折疊(F在BC邊上,不與B、C重合)使得C點(diǎn)落在矩形ABCD內(nèi)部的E處,F(xiàn)H平分∠BFE,則∠GFH的度數(shù)α滿足( )

A.90°<α<180°
B.α=90°
C.0°<α<90°
D.α隨著折痕位置的變化而變化
【答案】分析:利用角平分線的性質(zhì)計(jì)算.
解答:解:由題意可得,∠CFG=∠EFG
又有∠EFH=∠BFH
∴∠GFE+∠EFH=90°
即∠GFH的α度數(shù)是90°.
故選B.
點(diǎn)評:此題主要考查角平分線的性質(zhì)和展開與折疊的知識(shí),得出∠CFG=∠EFG是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,將一張矩形紙片ABCD折疊,使AB落在AD邊上,然后打開,折痕為AE,頂點(diǎn)B的落點(diǎn)為F.你認(rèn)為四邊形ABEF是什么特殊四邊形?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖:將一張矩形紙片ABCD的角C沿著GF折疊(F在BC邊上,不與B、C重合)使得C點(diǎn)落在矩形ABCD內(nèi)部的E處,F(xiàn)H平分∠BFE,則∠GFH的度數(shù)α滿足(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將一張矩形紙片(矩形ABCD)按如圖方式折疊,使頂點(diǎn)B和D重合,折痕為EF.
(1)連接EB,求證:四邊形EBFD是菱形;
(2)若AB=3,BC=9,求重疊部分三角形DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將一張矩形紙片A′B′C′D′沿EF折疊,使點(diǎn)B′落在A′D′邊上的點(diǎn)B處;沿BG折疊,使點(diǎn)D′落在點(diǎn)D處,且BD過F點(diǎn).
(1)試判斷四邊形BEFG的形狀,并證明你的結(jié)論;
(2)當(dāng)∠BFE為多少度時(shí),四邊形BEFG是菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將一張矩形紙片對折再對折,然后沿著圖中的虛線剪下一個(gè)角(虛線與折痕成45°角),打開,則所得的平面圖形是
正方形
正方形

查看答案和解析>>

同步練習(xí)冊答案