【題目】如圖所示,在RtABC中,∠C90°,∠A30°.

1)尺規(guī)作圖:作線段AB的垂直平分線l(保留作圖痕跡,不寫作法);

2)在已作的圖形中,若l分別交AB、ACBC的延長線于點D、E、F,連接BE.求證:EF2DE

【答案】1)見解析;(2)見解析。

【解析】

1)根據(jù)垂直平分線的做法即可畫出(2)根據(jù)垂直平分線的性質(zhì)與含30°角的直角三角形的性質(zhì)即可證明.

解:(1)直線l即為所求.

分別以AB為圓心,以任意長為半徑,兩圓相交于兩點,連接此兩點即可.作圖正確.

2)證明:在RtABC中,∵∠A30°,∠ABC60°.

又∵l為線段AB的垂直平分線,

EAEB

∴∠EBA=∠A30°,∠AED=∠BED60°,

∴∠EBC30°=∠EBA,∠FEC60°.

又∵EDAB,ECBC,

EDEC

RtECF中,∠FEC60°,

∴∠EFC30°,

EF2EC,∴EF2ED

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標系中A0,a),Bb0),且a、b滿足作射線BA,AB10,動點PB開始沿射線BA以每秒2個單位長度的速度運動,運動時間為t

1)求點A、B的坐標;

2)設(shè)△AOP的面積為S,用含t的式子表示S,并直接寫出t的取值范圍;

3)點M為線段OP的中點,連接AM,當點P在線段BA上時,△AOM的面積為△AOB面積的時,求出t值,并求出點Mx軸距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù) 的圖象如圖所示,反比例函數(shù) 與正比例函數(shù) 在同一坐標系中的大致圖象可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,a、b、c分別是A、B、C的對邊,下列條件不能判斷ABC是直角三角形的是( )

A.AB=C

B.ABC=3:4:5

C.(b+c)(b﹣c)=a2

D.a(chǎn)=7,b=24,c=25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小明在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度 ,AB=10米,AE=15米.

(1)求點B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC90°,ADBCABBC,EAB的中點,CEBD

1)求證:△ABD≌△BCE

2)求證:AC是線段ED的垂直平分線.

3)△DBC是等腰三角形嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知D是△ABC中的邊BC上的一點,∠BAD=∠C,∠ABC的平分線交邊AC于E,交AD于F,那么下列結(jié)論中錯誤的是( )

A.△BDF∽△BEC
B.△BFA∽△BEC
C.△BAC∽△BDA
D.△BDF∽△BAE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C=90°AC=4,BC=3,點PAC邊上的動點,過點PPDAB于點D,則PB+PD的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在生活人們已經(jīng)離不開密碼,如取款、上網(wǎng)等都需要密碼,有一種用“因式分解”法產(chǎn)生的密碼,方便記憶.原理是:如對于多項式,因式分解的結(jié)果是,若取,時則各個因式的值是:,,,把這些值從小到大排列得到,于是就可以把“018162”作為一個六位數(shù)的密碼.對于多項式,取,時,請你寫出用上述方法產(chǎn)生的密碼_________

查看答案和解析>>

同步練習(xí)冊答案