【題目】數(shù)軸上有兩個(gè)動(dòng)點(diǎn)M,N,如果點(diǎn)M始終在點(diǎn)N的左側(cè),我們稱作點(diǎn)M是點(diǎn)N追趕點(diǎn).如圖,數(shù)軸上有2個(gè)點(diǎn)A,B,它們表示的數(shù)分別為-3,1,已知點(diǎn)M是點(diǎn)N追趕點(diǎn),且MN表示的數(shù)分別為m,n

1)由題意得:點(diǎn)A是點(diǎn)B追趕點(diǎn),AB=1-(-3)=4(AB表示線段AB的長(zhǎng),以下相同);類似的,MN=____________

2)在A,M,N三點(diǎn)中,若其中一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)所構(gòu)成線段的中點(diǎn),請(qǐng)用含m的代數(shù)式來表示n

3)若AM=BN,MN=BM,求mn值.

【答案】1n-m;(2)①MAN的中點(diǎn),n=2m+3;②AMN中點(diǎn),n=-m-6;③NAM的中點(diǎn),;(3

【解析】

1)由兩點(diǎn)間距離直接求解即可;

2)分三種情況討論:①MA、N的中點(diǎn),n=2m+3;②當(dāng)A點(diǎn)在M、N點(diǎn)中點(diǎn)時(shí),n=6m;③NM、A的中點(diǎn)時(shí),n;

3)由已知可得|m+3|=|n1|,nm|m+3|,分情況求解即可.

1MN=nm

故答案為:nm;

2)分三種情況討論:

MA、N的中點(diǎn),

n+(-3)=2m

n=2m+3;

AM、N點(diǎn)中點(diǎn)時(shí),m+n=-3×2,

n=6m;

NM、A的中點(diǎn)時(shí),-3+m=2n

n;

3)∵AM=BN,

|m+3|=|n1|

MNBM

nm|m+3|,

nm,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個(gè)長(zhǎng)為4a、寬為b的長(zhǎng)方形,沿圖中虛線用剪刀平均分成四塊小長(zhǎng)方形,然后用四塊小長(zhǎng)方形拼成的一個(gè)“回形”正方形(如圖2).

①圖2中的陰影部分的面積為 ;

②觀察圖2請(qǐng)你寫出 (a+b)2、(a﹣b)2、ab之間的等量關(guān)系是 ;

③根據(jù)(2)中的結(jié)論,若x+y=5,xy=,則(x﹣y)2=

④實(shí)際上通過計(jì)算圖形的面積可以探求相應(yīng)的等式.

如圖3,你發(fā)現(xiàn)的等式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,.若動(dòng)點(diǎn)從點(diǎn)開始,沿的路徑運(yùn)動(dòng),且速度為每秒,設(shè)運(yùn)動(dòng)的時(shí)間為秒,當(dāng)______時(shí),為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線與直線相交于A、B兩點(diǎn).第一象限上的點(diǎn)M(m,n)(A點(diǎn)左側(cè))雙曲線的動(dòng)點(diǎn).過點(diǎn)B作BD∥y軸交x軸于點(diǎn)D.過N(0,-n)作NC∥x軸交雙曲線于點(diǎn)E,交BD于點(diǎn)C.

(1)若點(diǎn)D坐標(biāo)是(-8,0),求A、B兩點(diǎn)坐標(biāo)及k的值

(2)B是CD的中點(diǎn),四邊形OBCE的面積為4,求直線CM的解析式

(3)設(shè)直線AM、BM分別與y軸相交于P、Q兩點(diǎn),且MA=pMP,MB=qMQ,求pq的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,等邊ABC中,D、E分別在BCAC邊上運(yùn)動(dòng),且始終保持BD=CE,點(diǎn)DE始終不與等邊ABC的頂點(diǎn)重合.連接AD、BE,AD、BE交于點(diǎn)F

1)寫出在運(yùn)動(dòng)過程中始終全等的三角形,井選擇其中一組證明;

2)運(yùn)動(dòng)過程中,∠BFD的度數(shù)是否會(huì)改變?如果改變,請(qǐng)說明理由;如果不變,求出∠BFD的度數(shù),再說明理由.

3)直接寫出運(yùn)動(dòng)過程中,AE、AB、BD三條線段長(zhǎng)度之間的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為建設(shè)國(guó)家森林城市,園林部門決定搭配A.B兩種園藝造型共50個(gè)擺放在市區(qū),現(xiàn)有3490盆甲種花卉和2950盆乙種花卉可供使用,已知搭配一個(gè)A種造型需甲種花卉80盆,乙種花卉40盆,搭配一個(gè)B種造型需甲種花卉50盆,乙種花卉90.

1)問符合題意的搭配方案有幾種?請(qǐng)你幫助設(shè)計(jì)出來;

2)若搭配一個(gè)A種造型的費(fèi)用是800元,搭配一個(gè)B種造型的費(fèi)用是960元,試說明(1)中哪種方案費(fèi)用最低?最低費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtOAB的直角邊OAx軸上,頂點(diǎn)B的坐標(biāo)為(6,8),直線CDAB于點(diǎn)D(6,3),交x軸于點(diǎn)C(12,0).

(1)求直線CD的函數(shù)表達(dá)式;

(2)動(dòng)點(diǎn)Px軸上從點(diǎn)(﹣10,0)出發(fā),以每秒1個(gè)單位的速度向x軸正方向運(yùn)動(dòng),過點(diǎn)P作直線l垂直于x軸,設(shè)運(yùn)動(dòng)時(shí)間為t.

①點(diǎn)P在運(yùn)動(dòng)過程中,是否存在某個(gè)位置,使得∠PDA=B?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

②請(qǐng)?zhí)剿鳟?dāng)t為何值時(shí),在直線l上存在點(diǎn)M,在直線CD上存在點(diǎn)Q,使得以OB為一邊,O,B,M,Q為頂點(diǎn)的四邊形為菱形,并求出此時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AMCN,點(diǎn)B為平面內(nèi)一點(diǎn),ABBCB.

(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系___

(2)如圖2,過點(diǎn)BBDAM于點(diǎn)D,求證:∠ABD=C;

(3)如圖3,(2)問的條件下,點(diǎn)E. FDM,連接BEBF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+NCF=180°,∠BFC=3DBE,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件:A+B=CC=90°,ACBCAB=345,A:∠B:∠C=345a2=(b+c)(bc)中,能確定△ABC是直角三角形的有(  )

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案