(2012•本溪)某中學(xué)為了更好地活躍校園文化生活,擬對本校自辦的“輝煌”校報(bào)進(jìn)行改版.先從全校學(xué)生中隨機(jī)抽取一部分學(xué)生進(jìn)行了一次問卷調(diào)查,題目為“你最喜愛校報(bào)的哪一個(gè)板塊”(每人只限選一項(xiàng)).問卷收集整理后繪制了不完整的頻數(shù)分布表和如圖扇形統(tǒng)計(jì)圖.
板塊名稱 頻數(shù)(人) 頻率
科技創(chuàng)新 66 0.165
美文佳作 70 0.175
校園新聞 72 0.18
自然探索 a 0.16
體壇縱橫 84 b
其它 44 0.11
合計(jì)
(1)填空:頻數(shù)分布表中a=
64
64
,b=
0.21
0.21
;
(2)“自然探索”板塊在扇形統(tǒng)計(jì)圖中所占的圓心角的度數(shù)為
57.6°
57.6°
;
(3)在參加此次問卷調(diào)查的學(xué)生中,最喜愛哪一個(gè)板塊的人數(shù)最多?有多少人喜歡?
(4)若全校有1500人,估計(jì)喜歡“校園新聞”板塊的有多少人?
分析:(1)首先根據(jù)科技創(chuàng)新的是66人,頻率是0.165,據(jù)此即可求得總?cè)藬?shù),然后利用總?cè)藬?shù)乘以0.16即可求得a的值,利用84除以總?cè)藬?shù)即可求得頻率b的值;
(2)利用“自然探索”板塊的頻率與360°的乘積就是扇形統(tǒng)計(jì)圖中所占的圓心角的度數(shù);
(3)最喜愛的板塊就是人數(shù)最多,或頻率最大的一組;
(4)用總?cè)藬?shù)1500乘以喜歡“校園新聞”板塊的頻率即可求解.
解答:解:(1)抽查的總?cè)藬?shù)是:66÷0.165=400,
則a=400×0.16=64,
b=84÷400=0.21;

(2)0.16×360=57.6°;

(3)最喜愛體壇縱橫的人數(shù)最多,是84人;

(4)若全校有1500人,估計(jì)喜歡“校園新聞”板塊的有1500×0.18=270人.
點(diǎn)評:本題考查了頻數(shù)分布表與扇形統(tǒng)計(jì)圖,用到的知識點(diǎn)是:頻率=頻數(shù)÷總數(shù),用樣本估計(jì)整體讓整體×樣本的百分比即可.以及扇形統(tǒng)計(jì)圖中扇形的度數(shù)的確定方法,利用360°乘以每一組的頻率.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•本溪二模)如圖,在某海域內(nèi)有三個(gè)港口A、C、D.港口C在港口A北偏東60°方向上,港口D在港口A北偏西60°方向上.一艘船以每小時(shí)25海里的速度沿北偏東30°的方向駛離A港口3小時(shí)后到達(dá)B點(diǎn)位置處,此時(shí)發(fā)現(xiàn)船艙漏水,同時(shí)在B處測得港口C在B處的南偏東75°方向上.若此船在B處向最近的港口?浚瑧(yīng)向A、C、D三個(gè)港口中的哪個(gè)港口停靠?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•本溪二模)某工廠用如圖所示的長方形和正方形紙板,做成如圖乙所示的豎式與橫式兩種長方體形狀的無蓋紙盒.
(1)現(xiàn)有正方形紙板162張,長方形紙板340張,若要做兩種紙盒共100個(gè),設(shè)做豎式紙盒x個(gè).
①根據(jù)題意,完成以下表格:
      紙盒
紙板
豎式紙盒(個(gè)) 橫式紙盒(個(gè))
x 100-x
正方形紙板(張)
x
x
2(100-x)
長方形紙板(張) 4x
3(100-x)
3(100-x)
②按兩種紙盒的生產(chǎn)個(gè)數(shù)來分,有哪幾種生產(chǎn)方案?
(2)若每個(gè)豎式紙盒獲利2元,橫式紙盒獲利3元,求上述哪種方案銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•本溪)某商店購進(jìn)甲、乙兩種型號的滑板車,共花費(fèi)13000元,所購進(jìn)甲型車的數(shù)量不少于乙型車數(shù)量的二倍,但不超過乙型車數(shù)量的三倍.現(xiàn)已知甲型車每輛進(jìn)價(jià)200元,乙型車每輛進(jìn)價(jià)400元,設(shè)商店購進(jìn)乙型車x輛.
(1)商店有哪幾種購車方案?
(2)若商店將購進(jìn)的甲、乙兩種型號的滑板車全部售出,并且銷售甲型車每輛獲得利潤70元,銷售乙型車每輛獲得利潤50元,寫出此商店銷售這兩種滑板車所獲得的總利潤y(元)與購進(jìn)乙型車的輛數(shù)x(輛)之間的函數(shù)關(guān)系式?并求出商店購進(jìn)乙型車多少輛時(shí)所獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•本溪)某工廠生產(chǎn)某品牌的護(hù)眼燈,并將護(hù)眼燈按質(zhì)量分成15個(gè)等級(等級越高,燈的質(zhì)量越好.如:二級產(chǎn)品好于一級產(chǎn)品).若出售這批護(hù)眼燈,一級產(chǎn)品每臺可獲利潤21元,每提高一個(gè)等級每臺可多獲利潤1元,工廠每天只能生產(chǎn)同一個(gè)等級的護(hù)眼燈,每個(gè)等級每天生產(chǎn)的臺數(shù)如下表所示:
等級(x級) 一級 二級 三級
生產(chǎn)量(y臺/天) 78 76 74
(1)已知護(hù)眼燈每天的生產(chǎn)量y(臺)是等級x(級)的一次函數(shù),請直接寫出y與x之間的函數(shù)關(guān)系式:
y=-2x+80
y=-2x+80
;
(2)若工廠將當(dāng)日所生產(chǎn)的護(hù)眼燈全部售出,工廠應(yīng)生產(chǎn)哪一等級的護(hù)眼燈,才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案