如圖1,在直角梯形ABCD中,CD∥AB,CB⊥AB,BC=6cm,DC=6cm,AD=10cm
(1)求AB的長(zhǎng).
(2)操作:如圖2,過(guò)點(diǎn)D作DE⊥AB于E.將直角梯形ABCD沿DE剪開(kāi),得到四邊形DEBC和△ADE.四邊形DEBC不動(dòng),將△ADE沿射線AD的方向,以每秒1cm的速度平移,當(dāng)點(diǎn)A平移到點(diǎn)D時(shí),停止平移.
探究:設(shè)在平移過(guò)程中,△ADE與四邊形DEBC重疊部分的面積為ycm2,平移時(shí)間為x秒,求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍?
精英家教網(wǎng)
分析:(1)通過(guò)作輔助線,過(guò)點(diǎn)D作DE⊥AB于E,很容易就可求出AB的長(zhǎng)度;
(2)根據(jù)平移的性質(zhì),DD′=AA′=x,然后結(jié)合圖形和題意,即可推出△D′DF∽△D′A′E′,根據(jù)對(duì)應(yīng)邊的比例相等的性質(zhì),即可推出y關(guān)于x的解析式.
解答:解:(1)如圖,過(guò)點(diǎn)D作DE⊥AB于E,精英家教網(wǎng)
∵CB⊥AB,CD∥AB,
∴∠C=∠B=∠DEB=90°,
∴四邊形DEBC為矩形,
∴DE=CD=6,DE=BC=6,
∴在Rt△ADE中,AE=8,
∴AB=8+6=14;

(2)如圖,當(dāng)0≤x≤10時(shí),
由平移得,DD′=AA′=x.精英家教網(wǎng)
∵DF∥A′E′,
∴∠D′DF=∠DA′M,∠D′FD=∠E′
∴△D′DF∽△D′A′E′,
D′D
D′A′
=
D′F
D′E′
=
DF
A′E′

∴DF=8×
x
10
=
4x
5

D′F=6×
x
10
=
3x
5

∴E′F=6-
3x
5

∴y=(6-
3x
5
)•
4x
5
,
∴y=-
12
25
x2+
24
5
x
(0≤x≤7.5);
當(dāng)△ADE平移到DE與BC在同一條直線之后,y=-3.6x+36(7.5≤x≤10).
點(diǎn)評(píng):本題主要考查了相似三角形的判定和性質(zhì)、勾股定理、平移的性質(zhì)、直角梯形的性質(zhì),解題的關(guān)鍵在于求出三角形相似、作輔助線構(gòu)造直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖1,在直角梯形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BC,CD運(yùn)動(dòng)至點(diǎn)D停止.設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則△BCD的面積是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀理解:如圖1,在直角梯形ABCD中,AB∥CD,∠B=90°,點(diǎn)P在BC邊上,當(dāng)∠APD=90°時(shí),易證△ABP∽△PCD,從而得到BP•PC=AB•CD,解答下列問(wèn)題.
(1)模型探究:如圖2,在四邊形ABCD中,點(diǎn)P在BC邊上,當(dāng)∠B=∠C=∠APD時(shí),求證:BP•PC=AB•CD;
(2)拓展應(yīng)用:如圖3,在四邊形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于點(diǎn)O,以O(shè)為頂點(diǎn),以BC所在直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)P為線段OC上一動(dòng)點(diǎn)(不與端點(diǎn)O、C重合)
(i)當(dāng)∠APD=60°時(shí),求點(diǎn)P的坐標(biāo);
(ii)過(guò)點(diǎn)P作PE⊥PD,交y軸于點(diǎn)E,設(shè)PO=x,OE=y,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖1,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.容易證得:CE=CF;
(1)在圖1中,若G在AD上,且∠GCE=45°,試猜想GE、BE、GD三線段之間的關(guān)系,并證明你的結(jié)論;
(2)在(1)的條件下,若以C為圓心,CD為半徑作圓,試判斷此圓與直線EG的位置關(guān)系,并說(shuō)明理由;
(3)運(yùn)用(1)中解答所積累的經(jīng)驗(yàn)和知識(shí),完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一點(diǎn),且∠DCE=45°,BE=4,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在直角梯形ABCD中,∠B=90°,DC∥AB,動(dòng)點(diǎn)P從B點(diǎn)出發(fā),沿折線B→C→D→A運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)的速度為2個(gè)單位長(zhǎng)度/秒,若設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為x秒,△ABP的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則△ABC的面積為( 。
精英家教網(wǎng)
A、16B、48C、24D、64

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD=6cm.有兩個(gè)動(dòng)點(diǎn)E、F分別在線段CD與BC上運(yùn)動(dòng),點(diǎn)E以每秒1cm的速度從點(diǎn)C向點(diǎn)D勻速運(yùn)動(dòng).點(diǎn)F以每秒2cm的速度從點(diǎn)B向點(diǎn)C勻速運(yùn)動(dòng);當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求AD的長(zhǎng);
(2)設(shè)四邊形BFED的面積為y,求y 關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)點(diǎn)E、F在運(yùn)動(dòng)過(guò)程中,如果由點(diǎn)C、E、F構(gòu)成的三角形與△BDC相似,求線段BF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案