【題目】A、B兩市相距150千米,分別從A、B處測得國家級風(fēng)景區(qū)中心C處的方位角如圖所示,風(fēng)景區(qū)區(qū)域是以C為圓心,45千米為半徑的圓,tanα=1.627,tanβ=1.373.為了開發(fā)旅游,有關(guān)部門設(shè)計修建連接AB兩市的高速公路.問連接AB高速公路是否穿過風(fēng)景區(qū),請說明理由.

【答案】AB不穿過風(fēng)景區(qū).理由見解析。

【解析】

分析:首先過C作CDAB與D,由題意得:ACD=α,BCD=β,即可得在RtACD中,AD=CDtanα,在RtBCD中,BD=CDtanβ,繼而可得CDtanα+CDtanβ=AB,則可求得CD的長,即可知連接AB高速公路是否穿過風(fēng)景區(qū)。

解:AB不穿過風(fēng)景區(qū).理由如下:

如圖,過C作CDAB于點D,

根據(jù)題意得:ACD=α,BCD=β,

則在RtACD中,AD=CDtanα,

在RtBCD中,BD=CDtanβ,

AD+DB=AB,CDtanα+CDtanβ=AB。

(千米)。

CD=50>45,高速公路AB不穿過風(fēng)景區(qū)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】認(rèn)真觀察圖26.14個圖中陰影部分構(gòu)成的圖案,回答下列問題:

1)請寫出這四個圖案都具有的兩個共同特征.

特征1_________________________________________________;

特征2_________________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系;折線BCD表示轎車離甲地距離y(千米)與x(小時)之間的函數(shù)關(guān)系.請根據(jù)圖象解答下列問題:

(1)轎車到達(dá)乙地后,貨車距乙地多少千米?

(2)求線段CD對應(yīng)的函數(shù)解析式.

(3)轎車到達(dá)乙地后,馬上沿原路以CD段速度返回,求貨車從甲地出發(fā)后多長時間再與轎車相遇(結(jié)果精確到0.01).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解分式方程、分式的化簡求值

1 ;

2 ;

3,其中

4,其中x是不等式組的解集中符合題意的整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點PBC中點,兩邊PE、PF分別交AB、AC于點E、F,當(dāng)∠EPF△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合),給出以下四個結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=SABC;④BE+CF=EF.上述結(jié)論中始終正確的有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明是個愛動腦筋的學(xué)生,在學(xué)習(xí)了解直角三角形以后,一天他去測量學(xué)校的旗桿GF的高度,此時過旗桿的頂點F的陽光剛好過身高DE1.6米的小明的頭頂且在他身后形成的影長DC=2米.

(1)若旗桿的高度FGa米,用含a的代數(shù)式表示DG.

2)小明從點C后退6米在A的測得旗桿頂點F的仰角為30°,求旗桿FG的高度.(點AC、D、G在一條直線上, , ,結(jié)果精確到0.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家用1200元購進(jìn)了一批T恤,上市后很快售完,商家又用2800元購進(jìn)了第二批這種T恤,所購數(shù)量是第一批購進(jìn)量的2倍,但單價貴了5元.

(1)該商家購進(jìn)的第一批T恤是多少件?

(2)若兩批T恤按相同的標(biāo)價銷售,最后剩下20件按八折優(yōu)惠賣出,如果希望兩批T恤全部售完的利潤率不低于16%(不考慮其它因素),那么每件T恤的標(biāo)價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1 [探索發(fā)現(xiàn)]正方形,是對角線上的一個動點(與點不重合),過點交線段于點.求證:

小玲想到的思路是:過點于點于點,通過證明得到.請按小玲的思路寫出證明過程

2[應(yīng)用拓展]如圖2,的條件下,設(shè)正方形的邊長為,過點于點.求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】夏季的一天,身高為1.6m的小玲想測量一下屋前大樹的高度,她沿著樹影BA由B到A走去,當(dāng)走到C點時,她的影子頂端正好與樹的影子頂端重合,測得BC=3.2m,CA=0.8m,于是得出樹的高度為(  )

A.8m B.6.4m C.4.8m D.10m

【答案】A.

【解析】

試題分析:因為人和樹均垂直于地面,所以和光線構(gòu)成的兩個直角三角形相似,

設(shè)樹高x米,則,即,解得,x=8. 故選A.

考點:相似三角形的應(yīng)用.

型】單選題
結(jié)束】
11

【題目】已知圓錐的底面半徑為1cm,母線長為3cm,則其全面積為________cm2

查看答案和解析>>

同步練習(xí)冊答案