精英家教網(wǎng)如圖,點(diǎn)A是函數(shù)y=
1
x
的圖象上的點(diǎn),點(diǎn)B、C的坐標(biāo)分別為B(-
2
,-
2
)、C(
2
,
2
),試?yán)眯再|(zhì):“函數(shù)y=
1
x
的圖象上任意一點(diǎn)A都滿足|AB-AC|=2
2
”求解下面問題:作∠BAC的內(nèi)角平分線AE,過B作AE的垂線交AE于F,已知當(dāng)點(diǎn)A在函數(shù)y=
1
x
的圖象上運(yùn)動(dòng)時(shí),點(diǎn)F總在一個(gè)圓上運(yùn)動(dòng),則這圓的半徑為( 。
A、1
B、
2
2
C、
2
D、
3
2
2
分析:本題給出了角平分線,給出了兩條線段的定值差,因此可通過構(gòu)建等腰三角形作出這個(gè)等值差進(jìn)行求解.
解答:精英家教網(wǎng)解:如圖:過C作CD⊥AF,垂足為M,交AB于D,
∵AF平分∠BAC,且AM是DC邊上的高,
∴△DAC是等腰三角形,
∴AD=AC,
∴BD=AB-AC=2
2

即BD長(zhǎng)為定值,
過M作MN∥BD于N,
則四邊形MNBD是個(gè)平行四邊形,
∴MN=BD,
在△MNF中,無論F怎么變化,有兩個(gè)條件不變:
①M(fèi)N的長(zhǎng)為定值,②∠MFN=90°,
因此如果作△MNF的外接圓,那么F點(diǎn)總在以MN為直徑的圓上運(yùn)動(dòng),因此F點(diǎn)的運(yùn)動(dòng)軌跡應(yīng)該是個(gè)圓.
∴圓的直徑為MN,且MN=BD,BD=AB-AC=2
2

∴圓的半徑為
2

故選C.
點(diǎn)評(píng):本題以反比例函數(shù)為背景,結(jié)合了等腰三角形的知識(shí)、平行四邊形的知識(shí)、直角三角形的知識(shí)、三角形外接圓的知識(shí)等.綜合性強(qiáng).在本題中能夠找出AB、AC的等值差以及讓F與這個(gè)等值差相關(guān)聯(lián)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)B是函數(shù)y=
2x
(x>0)
圖象上一點(diǎn),點(diǎn)A是線段OB上一點(diǎn),以AB為半徑作⊙A恰好與x軸、y軸分別切于點(diǎn)C和點(diǎn)D,則點(diǎn)A的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)M是函數(shù)y=x+
1x
圖象上的一點(diǎn),直線l:y=x,過點(diǎn)M分別作MA⊥y軸,MB⊥l,A,B為垂足,則MA•MB=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,拋物線y=
1
2
x2+x-4與x軸的兩個(gè)交點(diǎn)分別為A、B,與y軸的交點(diǎn)為C.
(1)請(qǐng)直接寫出點(diǎn)A、B、C的坐標(biāo);
(2)如圖①,點(diǎn)Q是函數(shù)y=
1
2
x2+x-4的圖象在第三象限上的任一點(diǎn),點(diǎn)Q的橫坐標(biāo)為m,設(shè)四邊形AQCB的面積為S,求S與m之間的函數(shù)關(guān)系式,并求出m這何值時(shí),S有最大值,最大值是多少?
(3)拋物線y=
1
2
x2+x-4的對(duì)稱軸上是否存在一點(diǎn)H,使△BCH的周長(zhǎng)最?若存在,請(qǐng)直接寫出H點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
(4)如圖②,若點(diǎn)E為線段BC的中點(diǎn),EF垂直平分BC交x軸于點(diǎn)F(-3,0),點(diǎn)P是拋物線y=
1
2
x2+x-4對(duì)稱軸上的一點(diǎn),設(shè)P點(diǎn)的縱坐標(biāo)為t,請(qǐng)直接寫出∠PEC為鈍角三角形時(shí)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)B是函數(shù)y=
1
x
和y=x的圖象在第一象限的交點(diǎn),點(diǎn)E在函數(shù)y=
1
x
的圖象上,過B、E兩點(diǎn)作x軸的垂線,垂足分別為C、F,直線EF與直線y=x交于點(diǎn)D.試判斷DF+EF與2BC的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案