【題目】某農(nóng)場(chǎng)急需銨肥8噸,在該農(nóng)場(chǎng)南北方向分別有一家化肥公司A、B,A公司有銨肥3噸,每噸售價(jià)750元;B公司有銨肥7噸,每噸售價(jià)700元,汽車(chē)每千米的運(yùn)輸費(fèi)用b(單位:元/千米)與運(yùn)輸重量a(單位:噸)的關(guān)系如圖所示.
(1)根據(jù)圖象求出b關(guān)于a的函數(shù)解析式(包括自變量的取值范圍);
(2)若農(nóng)場(chǎng)到B公司的路程是農(nóng)場(chǎng)到A公司路程的2倍,農(nóng)場(chǎng)到A公司的路程為m千米,設(shè)農(nóng)場(chǎng)從A公司購(gòu)買(mǎi)x噸銨肥,購(gòu)買(mǎi)8噸銨肥的總費(fèi)用為y元(總費(fèi)用=購(gòu)買(mǎi)銨肥費(fèi)用+運(yùn)輸費(fèi)用),求出y關(guān)于x的函數(shù)解析式(m為常數(shù)),并向農(nóng)場(chǎng)建議總費(fèi)用最低的購(gòu)買(mǎi)方案.
【答案】(1)b=;(2)詳見(jiàn)解析.
【解析】
(1)分別設(shè)兩段函數(shù)圖象的解析式,代入圖象上點(diǎn)的坐標(biāo)求解即可;
(2)先求出農(nóng)場(chǎng)從A、B公司購(gòu)買(mǎi)銨肥的費(fèi)用,再求出農(nóng)場(chǎng)從A、B公司購(gòu)買(mǎi)銨肥的運(yùn)輸費(fèi)用,兩者之和即為總費(fèi)用,可以求出總費(fèi)用關(guān)于x的解析式是一次函數(shù),根據(jù)m的取值范圍不同分兩類(lèi)討論,可得出結(jié)論.
(1)有圖象可得,函數(shù)圖象分為兩部分,設(shè)第一段函數(shù)圖象為y=k1x,代入點(diǎn)(4,12),即12=k1×4,可得k1=3,設(shè)第二段函數(shù)圖象為y=k2x+c,代入點(diǎn)(4,12)、(8,32)可列出二元一次方程組,解得:k2=5,c=-8,所以函數(shù)解析式為:b=;
(2)農(nóng)場(chǎng)從A公司購(gòu)買(mǎi)銨肥的費(fèi)用為750x元,因?yàn)?/span>B公司有銨肥7噸,1≤x≤3,故農(nóng)場(chǎng)從B公司購(gòu)買(mǎi)銨肥的重量(8-x)肯定大于5噸,農(nóng)場(chǎng)從B公司購(gòu)買(mǎi)銨肥的費(fèi)用為700(8-x)元,所以購(gòu)買(mǎi)銨肥的總費(fèi)用=750x+700(8-x)=50x+5600(0≤x≤3);農(nóng)場(chǎng)從A公司購(gòu)買(mǎi)銨肥的運(yùn)輸費(fèi)用為3xm元,且滿(mǎn)足1≤x≤3,農(nóng)場(chǎng)從B公司購(gòu)買(mǎi)銨肥的運(yùn)輸費(fèi)用為[5(8-x)-8]×2m元,所以購(gòu)買(mǎi)銨肥的總運(yùn)輸費(fèi)用為3xm+[5(8-x)-8]×2m=-7mx+64m元,因此農(nóng)場(chǎng)購(gòu)買(mǎi)銨肥的總費(fèi)用y=50x+5600-7mx+64m=(50-7m)x+5600+64m(1≤x≤3),分一下兩種情況進(jìn)行討論;
①當(dāng)50-7m≥0即m≤時(shí),y隨x的增加而增加,則x=1使得y取得最小值即總費(fèi)用最低,此時(shí)農(nóng)場(chǎng)銨肥的購(gòu)買(mǎi)方案為:從A公司購(gòu)買(mǎi)1噸,從B公司購(gòu)買(mǎi)7噸,
②當(dāng)50-7m<0即m>時(shí),y隨x的增加而減少,則x=3使得y取得最小值即總費(fèi)用最低,此時(shí)農(nóng)場(chǎng)銨肥的購(gòu)買(mǎi)方案為:從A公司購(gòu)買(mǎi)3噸,從B公司購(gòu)買(mǎi)5噸.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC和△ADE均為等邊三角形,BD、CE交于點(diǎn)F.
(1)求證:BD=CE;(2)求銳角∠BFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O為直線(xiàn)AB上一點(diǎn),過(guò)O點(diǎn)作射線(xiàn)OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線(xiàn)OB上,另一邊ON在直線(xiàn)AB的下方.
(1)將圖1中的三角板繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)至圖2的位置,使得ON落在射線(xiàn)OB上,此時(shí)三角板旋轉(zhuǎn)的角度為 度;
(2)繼續(xù)將圖2中的三角板繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿(mǎn)足什么等量關(guān)系,并說(shuō)明理由;
(3)在上述直角三角板從圖1逆時(shí)針旋轉(zhuǎn)到圖3的位置的過(guò)程中,若三角板繞點(diǎn)O按15°每秒的速度旋轉(zhuǎn),當(dāng)直角三角板的直角邊ON所在直線(xiàn)恰好平分∠AOC時(shí),求此時(shí)三角板繞點(diǎn)O的運(yùn)動(dòng)時(shí)間t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】仔細(xì)閱讀下列材料.
“分?jǐn)?shù)均可化為有限小數(shù)或無(wú)限循環(huán)小數(shù)”,反之,“有限小數(shù)或無(wú)限小數(shù)均可化為分?jǐn)?shù)”.
例如:=1÷4=0.25;==8÷5=1.6;=1÷3=,反之,0.25== ;1.6===.那么,怎么化成分?jǐn)?shù)呢?
解:∵×10=3+, ∴不妨設(shè)=x,則上式變?yōu)?/span>10x=3+x,解得x=,即=;
∵=,設(shè)=x,則上式變?yōu)?/span>100x=2+x,解得x=,
∴==1+x=1+=
⑴將分?jǐn)?shù)化為小數(shù):=______,=_______;
⑵將小數(shù)化為分?jǐn)?shù):=______,=_______;
⑶將小數(shù)化為分?jǐn)?shù),需要寫(xiě)出推理過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)某地區(qū)為了鼓勵(lì)市民節(jié)約用水,計(jì)劃實(shí)行生活用水按階梯式水價(jià)計(jì)費(fèi),每月用水量不超過(guò)10噸(含10噸)時(shí),每噸按基礎(chǔ)價(jià)收費(fèi);每月用水量超過(guò)10噸時(shí),超過(guò)的部分每噸按調(diào)節(jié)價(jià)收費(fèi).例如,第一個(gè)月用水16噸,需交水費(fèi)17.8元,第二個(gè)月用水20噸,需交水費(fèi)23元.
(1)求每噸水的基礎(chǔ)價(jià)和調(diào)節(jié)價(jià);
(2)設(shè)每月用水量為n噸,應(yīng)交水費(fèi)為m元,寫(xiě)出m與n之間的函數(shù)解析式;
(3)若某月用水12噸,應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司決定利用僅有的349個(gè)甲種部件和295個(gè)乙種部件組裝A、B兩種型號(hào)的簡(jiǎn)易板房共50套捐贈(zèng)給災(zāi)區(qū).已知組裝一套A型號(hào)簡(jiǎn)易板房需要甲種部件8個(gè)和乙種部件4個(gè),組裝一套B型號(hào)簡(jiǎn)易板房需要甲種部件5個(gè)和乙種部件9個(gè).
(1)該公司組裝A、B兩種型號(hào)的簡(jiǎn)易板房時(shí),共有多少種組裝方案?
(2)若組裝A、B兩種型號(hào)的簡(jiǎn)易板房所需費(fèi)用分別為每套200元和180元,問(wèn)最少總組裝費(fèi)用是多少元?并寫(xiě)出總組裝費(fèi)用最少時(shí)的組裝方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】崇左市江州區(qū)太平鎮(zhèn)壺城社區(qū)調(diào)查居民雙休日的學(xué)習(xí)狀況,采取了下列調(diào)查方式;a:從崇左高中、太平鎮(zhèn)中、太平小學(xué)三所學(xué)校中選取200名教師;b:從不同住宅樓(即江灣花園與萬(wàn)鵬住宅樓)中隨機(jī)選取200名居民;c:選取所管轄區(qū)內(nèi)學(xué)校的200名在校學(xué)生.并將最合理的調(diào)查方式得到的數(shù)據(jù)制成扇形統(tǒng)計(jì)圖和部分?jǐn)?shù)據(jù)的頻數(shù)分布直方圖.以下結(jié)論:①上述調(diào)查方式最合理的是b;②在這次調(diào)查的200名教師中,在家學(xué)習(xí)的有60人;③估計(jì)該社區(qū)2000名居民中雙休日學(xué)習(xí)時(shí)間不少于4小時(shí)的人數(shù)是1180人;④小明的叔叔住在該社區(qū),那么雙休日他去叔叔家時(shí),正好叔叔不學(xué)習(xí)的概率是0.1.其中正確的結(jié)論是( )
A.①④
B.②④
C.①③④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,拋物線(xiàn)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為點(diǎn)A(﹣2,3),且拋物線(xiàn)y=ax2+bx+c與y軸交于點(diǎn)B(0,2).
(1)求該拋物線(xiàn)的解析式;
(2)是否在x軸上存在點(diǎn)P使△PAB為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)P是x軸上任意一點(diǎn),則當(dāng)PA﹣PB最大時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)?jiān)跈M線(xiàn)上填寫(xiě)合適的內(nèi)容,完成下面的證明:
(1)如圖①如果AB∥CD,求證:∠APC=∠A+∠C.
證明:過(guò)P作PM∥AB,
所以∠A=∠APM,( )
因?yàn)?/span>PM∥AB,AB∥CD(已知)
所以PM∥CD( )
所以∠C= ( )
因?yàn)椤?/span>APC=∠APM+∠CPM
所以∠APC=∠A+∠C( )
(2)如圖②,AB∥CD,根據(jù)上面的推理方法,直接寫(xiě)出∠A+∠P+∠Q+∠C= .
(3)如圖③,AB∥CD,若∠ABP=x,∠BPQ=y,∠PQC=z,∠QCD=m,則m= (用x、y、z表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com