【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB中點O為圓心,作半圓與AC相切,點PQ分別是邊BC和半圓上的動點,連接PQ,則PQ長的最大值與最小值的和是__

【答案】9

【解析】

如圖,設(shè) OAC相切于點E,連接OE,作BC垂足為 O,此時垂線段最短,最小值為,求出,如圖當AB邊上時,B重合時,最大值=5+3=8,由此不難解決問題.

如圖,設(shè)OAC相切于點E,連接OE,BC垂足為 O,

此時垂線段最短, 最小值為

AB=10,AC=8,BC=6,

∴∠C=90°,

∵∠=90°,

AC

AO=OB,

C=B,

=AC=4,

最小值為=1,

如圖,AB邊上時, B重合時, 經(jīng)過圓心,經(jīng)過圓心的弦最長,

最大值=5+3=8,

PQ長的最大值與最小值的和是9.

故答案為:9.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:

數(shù)學活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點,請在圓上找出滿足條件的點,使智慧三角形(畫出點的位置,保留作圖痕跡);

如圖,在正方形中,的中點,上一點,且,試判斷是否為智慧三角形,并說明理由;

運用:

如圖,在平面直角坐標系中,的半徑為,點是直線上的一點,若在上存在一點,使得智慧三角形,當其面積取得最小值時,直接寫出此時點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx+ca0)的對稱軸為直線x=﹣1,與x軸的一個交點在(﹣30和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:2ab04acb20點(x1y1),(x2,y2)在拋物線上若x1x2,則y1y2;a+b+c0.正確結(jié)論的個數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ACB內(nèi)接于圓O,AB為直徑,CDAB與點D,E為圓外一點,EOAB,與BC交于點G,與圓O交于點F,連接EC,且EG=EC

1)求證:EC是圓O的切線;

2)當∠ABC=22.5°時,連接CF

①求證:AC=CF

②若AD=1,求線段FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.

⑴請你補全這個輸水管道的圓形截面;

⑵若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某天貓店銷售某種規(guī)格學生軟式排球,成本為每個30元.以往銷售大數(shù)據(jù)分析表明:當每只售價為40元時,平均每月售出600個;若售價每上漲1元,其月銷售量就減少20個,若售價每下降1元,其月銷售量就增加200個.

(1)若售價上漲m元,每月能售出   個排球(用m的代數(shù)式表示).

(2)為迎接雙十一,該天貓店在10月底備貨1300個該規(guī)格的排球,并決定整個11月份進行降價促銷,問售價定為多少元時,能使11月份這種規(guī)格排球獲利恰好為8400

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+cab、c為常數(shù),且a≠0)的圖象與x軸的交點的橫坐標分別為﹣1、3,則下列結(jié)論:①abc0;②2a+b0;③3a+2c0;④對于任意x均有ax2a+bxb≥0,正確個數(shù)有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖象如圖所示,有以下結(jié)論:①abc0;②abc0;③2ab;④4a2bc0;⑤若點(2,y1)(,y2)在該圖象上,則y1y2. 其中正確的結(jié)論個數(shù)是 ( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù)y=|a|x2+bx+c的圖象經(jīng)過A(m,n)、B(0,y1)C(3m,n)、D(, y2)E(2,y3),則y1、y2y3的大小關(guān)系是( ).

A. y1< y2< y3B. y1 < y3< y2C. y3< y2< y1D. y2< y3< y1

查看答案和解析>>

同步練習冊答案