如圖,已知AB=AC,用“SAS”定理證明△ABD≌△ACE,還需添加條件________;
若用“ASA”定理說(shuō)明明△ABD≌△ACE,還需添加條件________;
若用“AAS”定理說(shuō)明△ABD≌△ACE,還需添加條件________.

AD=AE    ∠B=∠C;    ∠ADB=∠AEC;
分析:根據(jù)已知條件,利用全等三角形的判定定理:SAS、ASA、AAS證明即可.
解答:∵已知AB=AC,
∴如果用“SAS”定理證明△ABD≌△ACE,
還需添加條件AD=AE;
若用“ASA”定理證明△ABD≌△ACE,還需添加條件∠B=∠C;
若用“AAS”定理證明△ABD≌△ACE,還需添加條件∠ADB=∠AEC.
故答案為:AD=AE;∠B=∠C;∠ADB=∠AEC.
點(diǎn)評(píng):本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,則∠BFD的度數(shù)是( 。
A、60°B、90°C、45°D、120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,已知AB=AC,D是BC的中點(diǎn),E是AD上的一點(diǎn),圖中全等三角形有幾對(duì)( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、如圖,已知AB=AC,AD=AE.求證BD=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,已知AB=AC,AD=AE,BD=EC,則圖中有
2
對(duì)全等三角形,它們是
△ABD≌△AEC
;
△ABE≌△ADC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB=AC,BC=CD=AD,求∠B的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案