【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點(diǎn)P是BC上的一點(diǎn).
(1)請(qǐng)寫(xiě)出圖中∠1的一對(duì)同位角,一對(duì)內(nèi)錯(cuò)角,一對(duì)同旁內(nèi)角;
(2)求∠EFC與∠E的度數(shù);
(3)若∠BFP=46°,請(qǐng)判斷CE與PF是否平行?
【答案】(1)見(jiàn)解析;(2)∠EFC=108°;(3)不平行,理由見(jiàn)解析.
【解析】
(1)根據(jù)同位角、內(nèi)錯(cuò)角以及同旁內(nèi)角的定義,即可得出結(jié)論;
(2)由∠A+∠D=180°可得出AB∥CD,根據(jù)平行線的性質(zhì)可得出∠1=∠DFE,再結(jié)合∠1=3∠2、∠2=24°通過(guò)角的計(jì)算即可得出∠EFC與∠E的度數(shù);
(3)由(2)中∠E的度數(shù)結(jié)合∠BFP=46°,即可得出∠E≠∠BFP,從而得出CE與PF不平行.
(1)同位角:∠1與∠DFE;內(nèi)錯(cuò)角:∠1與∠BFC;同旁內(nèi)角:∠1與∠DFB.
(2)∵∠A+∠D=180°,
∴AB∥CD,
∴∠1=∠DFE.
∵∠1=3∠2,∠2=24°,
∴∠1=∠DFE=72°.
∵∠DFE=∠E+∠2,
∴∠E=48°.
∵∠DFE=180°-∠EFC,
∴∠EFC=108°.
(3)不平行.
∵∠E=48°,∠BFP=46°,
∴∠E≠∠BFP,
∴CE與PF不平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A、C的坐標(biāo)分別為A(-4,5),C(-1,3).
(1)請(qǐng)?jiān)诰W(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系(不寫(xiě)作法);
(2)請(qǐng)作出△ABC關(guān)于y軸對(duì)稱△A'B'C';
(3)分別寫(xiě)出A'、B'、C'的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小亮一家到桃林口水庫(kù)游玩.在岸邊碼頭P處,小亮和爸爸租船到庫(kù)區(qū)游玩,媽媽在岸邊碼頭P處觀看小亮與爸爸在水面劃船,小船從P處出發(fā),沿北偏東60°方向劃行,劃行速度是20米/分鐘,劃行10分鐘后到A處,接著向正南方向劃行一段時(shí)間到B處,在B處小亮觀測(cè)到媽媽所在的P處在北偏西37°的方向上,這時(shí)小亮與媽媽相距多少米?(精確到1m,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別在線段AD及其延長(zhǎng)線上,且DE=DF.下列條件使四邊形BECF為菱形的是( )
A.BE⊥CE
B.BF∥CE
C.BE=CF
D.AB=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園手機(jī)”現(xiàn)象越來(lái)越受到社會(huì)的關(guān)注.小麗在“統(tǒng)計(jì)實(shí)習(xí)”活動(dòng)中隨機(jī)調(diào)查了學(xué)校若干名學(xué)生家長(zhǎng)對(duì)“中學(xué)生帶手機(jī)到學(xué)校”現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:
(1)求這次調(diào)查的家長(zhǎng)總數(shù)及家長(zhǎng)表示“無(wú)所謂”的人數(shù),并補(bǔ)全圖①;
(2)求圖②中表示家長(zhǎng)“無(wú)所謂”的圓心角的度數(shù);
(3)從這次接受調(diào)查的家長(zhǎng)中,隨機(jī)抽查一個(gè),恰好是“不贊成”態(tài)度的家長(zhǎng)的概率是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB∥CD,直線MN與AB,CD分別交于點(diǎn)M,N,ME,NE分別是∠AMN與∠CNM的平分線,NE交AB于點(diǎn)F,過(guò)點(diǎn)N作NG⊥EN交AB于點(diǎn)G.
(1)求證:EM∥NG;
(2)連接EG,在GN上取一點(diǎn)H,使∠HEG=∠HGE,作∠FEH的平分線EP交AB于點(diǎn)P,求∠PEG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是直線AB上的一動(dòng)點(diǎn)(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點(diǎn)D在邊AB上時(shí),證明:AB=FA+BD;
(2)點(diǎn)D在AB的延長(zhǎng)線或反向延長(zhǎng)線上時(shí),(1)中的結(jié)論是否成立?若不成立,請(qǐng)畫(huà)出圖形并直接寫(xiě)出正確結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察如圖所示的長(zhǎng)方體.
(1)用符號(hào)表示下列兩棱的位置關(guān)系:AB___A′B′,AA′_____AB,D′A′_____D′C′,AD______BC.
(2) A′B′與BC所在的直線是兩條不相交的直線,它們_____平行線.(填“是”或“不是”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,海邊的一段堤岸高出海平面12米,附近的某建筑物高出海平面50米,演習(xí)中的某潛水艇在海平面下30米處.
(1)現(xiàn)以海平面的高度為基準(zhǔn),將其記為0米,高于海平面記為正,低于海平面記為負(fù),那么堤岸、附近建筑物及潛水艇的高度各應(yīng)如何表示?
(2)若以堤岸高度為基準(zhǔn),則堤岸、建筑物及潛水艇的高度又應(yīng)如何表示?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com