分析 (1)根據(jù)垂直的定義和平行線的性質(zhì)求出∠AED=∠BFA=90°,根據(jù)正方形的性質(zhì)可得AB=AD,∠BAD=∠ADC=90°,再利用同角的余角相等求出∠BAF=∠ADE,然后利用“角角邊”證明△AFB和△DEA全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=BF;
(2)根據(jù)同角的余角相等求出∠FAD=∠EDC,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AF=DE,根據(jù)正方形的性質(zhì)可得AD=CD,然后利用“邊角邊”證明△FAD和△EDC全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得DF=CE,全等三角形對(duì)應(yīng)角相等可得∠ADF=∠DCE,再求出∠DCF+∠CDF=90°,然后根據(jù)垂直的定義證明即可.
解答 解:
(1)證明:∵DE⊥AG于點(diǎn)E,BF∥DE且交AG于點(diǎn)F,
∴BF⊥AG于點(diǎn)F,
∴∠AED=∠BFA=90°,
∵四邊形ABCD是正方形,
∴AB=AD且∠BAD=∠ADC=90°,
∴∠BAF+∠EAD=90°,
∵∠EAD+∠ADE=90°,
∴∠BAF=∠ADE,
在△AFB和△DEA中,
$\left\{\begin{array}{l}{∠AED=∠BFA=90°}\\{∠BAF=∠ADE}\\{AB=AD}\end{array}\right.$,
∴△AFB≌△DEA(AAS),
∴BF=AE;
(2)DF=CE且DF⊥CE.
理由如下:∵∠FAD+∠ADE=90°,∠EDC+∠ADE=∠ADC=90°,
∴∠FAD=∠EDC,
∵△AFB≌△DEA,
∴AF=DE,
又∵四邊形ABCD是正方形,
∴AD=CD,
在△FAD和△EDC中,
$\left\{\begin{array}{l}{AF=DE}\\{∠FAD=∠EDC}\\{AD=CD}\end{array}\right.$,
∴△FAD≌△EDC(SAS),
∴DF=CE且∠ADF=∠DCE,
∵∠ADF+∠CDF=∠ADC=90°,
∴∠DCE+∠CDF=90°,
∴DF⊥CE.
點(diǎn)評(píng) 本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,三角形的面積,熟記性質(zhì)并確定出三角形全等的條件是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1+a不是一個(gè)代數(shù)式 | |
B. | 0是一個(gè)單項(xiàng)式 | |
C. | 一個(gè)多項(xiàng)式的次數(shù)為5,那么這個(gè)多項(xiàng)式的各項(xiàng)的次數(shù)都小于5 | |
D. | 單項(xiàng)式-$\frac{2πa^{2}}{3}$的系數(shù)是-$\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 28 | B. | 26 | C. | 24 | D. | 22 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com