試題分析:(1)根據(jù)等腰直角三角形的性質(zhì)可得AB=AC,∠BAC=90°,AB=AE,∠CAE=90°,再根據(jù)同角的余角相等可得∠1=∠2,即可證得結(jié)論;
(2)在△ABC中,根據(jù)∠B的正弦函數(shù)求得BC的長,即可得到BD的長,根據(jù)等腰直角三角形的性質(zhì)可得∠4=∠B=45°,由△ACE≌△ABD可得∠5=∠B=45°,EC=DB=3,即可得到△ECD是直角三角形,最后根據(jù)勾股定理求解即可.
(1)∵△ABC是等腰直角三角形
∴AB=AC,∠BAC=90°
同理AB=AE,∠CAE=90°
∵∠BAC=∠CAE=90°
∴∠1+∠3=∠2+∠3=90°
∴∠1=∠2
∴△ACE≌△ABD(SAS)
(2)在△ABC中
BC=
∴BD=BC-CD=4-1=3
∵△ABC是等腰直角三角形
∴∠4=∠B=45°
∵△ACE≌△ABD
∴∠5=∠B=45°,EC=DB=3
∵∠ECD=∠4+∠5=90°
∴△ECD是直角三角形
∴ED
.
點評:全等三角形的判定和性質(zhì)是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考常見題,一般難度不大,需熟練掌握.