(2009•湛江)某公司為了開發(fā)新產(chǎn)品,用A、B兩種原料各360千克、290千克,試制甲、乙兩種新型產(chǎn)品共50件,下表是試驗(yàn)每件新產(chǎn)品所需原料的相關(guān)數(shù)據(jù):
原料
含量
產(chǎn)品
A(單位:千克)B(單位:千克)
93
410
(1)設(shè)生產(chǎn)甲種產(chǎn)品x件,根據(jù)題意列出不等式組,求出x的取值范圍;
(2)若甲種產(chǎn)品每件成本為70元,乙種產(chǎn)品每件成本為90元,設(shè)兩種產(chǎn)品的成本總額為y元,寫出成本總額y(元)與甲種產(chǎn)品件數(shù)x(件)之間的函數(shù)關(guān)系式;當(dāng)甲、乙兩種產(chǎn)品各生產(chǎn)多少件時(shí),產(chǎn)品的成本總額最少?并求出最少的成本總額.
【答案】分析:(1)關(guān)鍵描述語:用A、B兩種原料各360千克、290千克,即所用的A,B兩種原料應(yīng)不大于360千克和290千克,再根據(jù)生產(chǎn)兩種產(chǎn)品所需各原料的量,列出不等式組即可.
(2)成本總額=甲種產(chǎn)品單價(jià)×數(shù)量+乙種產(chǎn)品單價(jià)×數(shù)量,列出關(guān)系式進(jìn)行分析.
解答:解:(1)依題意列不等式組得,
由不等式①得x≤32;
由不等式②得x≥30;
∴x的取值范圍為30≤x≤32.

(2)y=70x+90(50-x),
化簡得y=-20x+4500,
∵-20<0,∴y隨x的增大而減小.
而30≤x≤32,
∴當(dāng)x=32,50-x=18時(shí),y最小值=-20×32+4500=3860(元).
答:當(dāng)甲種產(chǎn)品生產(chǎn)32件,乙種18件時(shí),甲、乙兩種產(chǎn)品的成本總額最少,最少的成本總額為3860元.
點(diǎn)評(píng):(1)根據(jù)原題中已知A、B兩種原料的克數(shù)即可列出不等式組,求出其公共解集可;
(2)根據(jù)“成本總額=甲種產(chǎn)品單價(jià)×數(shù)量+乙種產(chǎn)品單價(jià)×數(shù)量”列出關(guān)系式,根據(jù)(1)中所求x的取值范圍求出y的最小值即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《數(shù)據(jù)分析》(06)(解析版) 題型:解答題

(2009•湛江)某語文老師為了了解中考普通話考試的成績情況,從所任教的九年級(jí)(1)、(2)兩班各隨機(jī)抽取了10名學(xué)生的得分,如圖所示:

(1)利用圖中的信息,補(bǔ)全下表:
班級(jí)平均數(shù)(分)中位數(shù)(分)眾數(shù)(分)
九(1)班1616
九(2)班16
(2)若把16分以上(含16分)記為“優(yōu)秀”,兩班各有60名學(xué)生,請(qǐng)估計(jì)兩班各有多少名學(xué)生成績優(yōu)秀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《數(shù)據(jù)收集與處理》(06)(解析版) 題型:解答題

(2009•湛江)某語文老師為了了解中考普通話考試的成績情況,從所任教的九年級(jí)(1)、(2)兩班各隨機(jī)抽取了10名學(xué)生的得分,如圖所示:

(1)利用圖中的信息,補(bǔ)全下表:
班級(jí)平均數(shù)(分)中位數(shù)(分)眾數(shù)(分)
九(1)班1616
九(2)班16
(2)若把16分以上(含16分)記為“優(yōu)秀”,兩班各有60名學(xué)生,請(qǐng)估計(jì)兩班各有多少名學(xué)生成績優(yōu)秀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年河南省許昌市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•湛江)某公司為了開發(fā)新產(chǎn)品,用A、B兩種原料各360千克、290千克,試制甲、乙兩種新型產(chǎn)品共50件,下表是試驗(yàn)每件新產(chǎn)品所需原料的相關(guān)數(shù)據(jù):
原料
含量
產(chǎn)品
A(單位:千克)B(單位:千克)
93
410
(1)設(shè)生產(chǎn)甲種產(chǎn)品x件,根據(jù)題意列出不等式組,求出x的取值范圍;
(2)若甲種產(chǎn)品每件成本為70元,乙種產(chǎn)品每件成本為90元,設(shè)兩種產(chǎn)品的成本總額為y元,寫出成本總額y(元)與甲種產(chǎn)品件數(shù)x(件)之間的函數(shù)關(guān)系式;當(dāng)甲、乙兩種產(chǎn)品各生產(chǎn)多少件時(shí),產(chǎn)品的成本總額最少?并求出最少的成本總額.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省湛江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•湛江)某語文老師為了了解中考普通話考試的成績情況,從所任教的九年級(jí)(1)、(2)兩班各隨機(jī)抽取了10名學(xué)生的得分,如圖所示:

(1)利用圖中的信息,補(bǔ)全下表:
班級(jí)平均數(shù)(分)中位數(shù)(分)眾數(shù)(分)
九(1)班1616
九(2)班16
(2)若把16分以上(含16分)記為“優(yōu)秀”,兩班各有60名學(xué)生,請(qǐng)估計(jì)兩班各有多少名學(xué)生成績優(yōu)秀.

查看答案和解析>>

同步練習(xí)冊(cè)答案