【題目】已知點(diǎn)的坐標(biāo)為.
(1)若點(diǎn)在軸上,求點(diǎn)坐標(biāo).
(2)若點(diǎn)P到兩坐標(biāo)軸的距離相等,求點(diǎn)P的坐標(biāo).
【答案】(1)點(diǎn)P的坐標(biāo)為(0,12);(2)點(diǎn)P的坐標(biāo)為(3,3)或(6,-6).
【解析】
(1)由點(diǎn)P在y軸上可知點(diǎn)P的橫坐標(biāo)為0,據(jù)此求得a的值即可求得答案;
(2)由于點(diǎn)P的坐標(biāo)為(2-a,3a+6),且到兩坐標(biāo)軸的距離相等,則可得|2-a|=|3a+6|,然后去絕對值得到關(guān)于a的兩個(gè)一次方程,再解方程即可.
(1)由題意得:2-a=0,
解得:a=2,
3a+6=12,
所以點(diǎn)P的坐標(biāo)為(0,12);
(2)根據(jù)題意得|2-a|=|3a+6|,
所以2-a=3a+6或2-a=-(3a+6),
解得a=-1或a=-4,
當(dāng)a=-1時(shí),2-a=3,3a+6=3,所以點(diǎn)P坐標(biāo)為(3,3);
當(dāng)a=-4時(shí),2-a=6,3a+6=-6,所以點(diǎn)P坐標(biāo)為(6,-6),
綜上點(diǎn)P的坐標(biāo)為(3,3)或(6,-6).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】足球訓(xùn)練中,為了訓(xùn)練球員快速搶斷轉(zhuǎn)身,教練在東西方向的足球場上畫了一條直線,要求球員在這條直線上進(jìn)行折返跑訓(xùn)練,如果約定向西為正,向東為負(fù),將某球員的一組折返距練習(xí)記錄如下(單位:米) :,.
球員最后到達(dá)的地方在出發(fā)點(diǎn)的哪個(gè)方向?距出發(fā)點(diǎn)多遠(yuǎn)?
球員訓(xùn)練過程中,最遠(yuǎn)處離出發(fā)點(diǎn) 米?
球員在這一組練習(xí)過程中,共跑了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖 ,AD 是∠BAC 的平分線,且 DF⊥AC 于 F,∠B=90°,DE=DC.
(1)求證:BE=CF.
(2)若△ADE 和△DCF 的面積分別是12和5,求△ABC 的面積.
(3)請你寫出∠BAC與∠CDE有什么數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O,∠AOE=90°.
(1)如圖1,若OC平分∠AOE,求∠AOD的度數(shù);
(2)如圖2,若∠BOC=4∠FOB,且OE平分∠FOC,求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其中,.
(1)若直線經(jīng)過、兩點(diǎn),求直線和拋物線的解析式;
(2)在拋物線的對稱軸上找一點(diǎn),使點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小,求出點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)為拋物線的對稱軸上的一個(gè)動點(diǎn),求使為直角三角形的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:對任意一個(gè)兩位數(shù),如果滿足個(gè)位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個(gè)兩位數(shù)為“迥異數(shù)”,將一個(gè)“迥異數(shù)”的個(gè)位數(shù)字與十位數(shù)字對調(diào)后得到一個(gè)新的兩位數(shù),把這個(gè)新兩位數(shù)與原兩位數(shù)的和與11的商記為.例如:,對調(diào)個(gè)位數(shù)字與十位數(shù)字得到新兩位數(shù)21,新兩位數(shù)與原兩位數(shù)的和為21+12=33,和與11的商為33÷11=3,所以.根據(jù)以上定義,回答下列問題:
(1)填空:①下列兩位數(shù):40,42,44中,“迥異數(shù)”為_______;②計(jì)算:=_______;
(2)如果一個(gè)“迥異數(shù)”的十位數(shù)字是,個(gè)位數(shù)字是,且,請求出“迥異數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的20個(gè)小球,其中紅球6個(gè),黑球14個(gè)
(1)先從袋子中取出x(x>3)個(gè)紅球后,再從袋子中隨機(jī)摸出1個(gè)球,將“摸出黑球”,記為事件A.請完成下列表格.
事件A | 必然事件 | 隨機(jī)事件 |
x的值 |
(2)先從袋子中取出m個(gè)紅球,再放入2m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)球是黑球的概率是,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,D為CB上一點(diǎn),過點(diǎn)D作DE⊥AB于點(diǎn)E.
(1)若CD=DE,判斷∠CAD與∠BAD的數(shù)量關(guān)系;
(2)若AE=EB,CB=10,AC=5,求△ACD的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com