【題目】如圖,對面積為1的△ABC逐次進(jìn)行以下操作:第一次操作,分別延長AB,BC,CA至點A1 , B1 , C1 , 使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1 , B1 , C1 , 得到△A1B1C1 , 記其面積為S1;第二次操作,分別延長A1B1 , B1C1 , C1A1至點A2 , B2 , C2 , 使得A2B1=2A1B1 , B2C1=2B1C1 , C2A1=2C1A1 , 順次連接A2 , B2 , C2 , 得到△A2B2C2 , 記其面積為S2 , 則S2

【答案】361
【解析】解 : 連接A1C,根據(jù)同高三角形面積的比等于底的比,得出△ABC的面積∶△A1CB的面積=AB∶A1B=1:2,又△ABC的面積等于1,故△A1CB的面積為2,同理△A1B1C的面積為4,故△A1B1B的面積等于6,同理△CB1C1的面積,△A1C1A的面積都是6,從而得出 S 1 = 19 S Δ A B C , 同理 S 2 = 19 S 1 = 361。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年3月28是第18個全國中小學(xué)生安全教育日.某校為增強(qiáng)學(xué)生的安全意識,組織全校學(xué)生參加安全知識測試,并對測試成績做了詳細(xì)統(tǒng)計,將測試成績(成績都是整數(shù),試卷滿分30分)繪制成了如下“頻數(shù)分布直方圖”.請回答:

(1)參加全校安全知識測試的學(xué)生有 名;

(2)中位數(shù)落在 分?jǐn)?shù)段內(nèi);

(3)若用各分?jǐn)?shù)段的中間值(如5.5~10.5的中間值為8)來代替本段均分,請你估算本次測試成績?nèi)F骄旨s是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線OA的方向是北偏東15°,射線OB的方向是北偏西40°,∠AOB=∠AOC,射線OD是OB的反向延長線.

(1)射線OC的方向是;
(2)求∠COD的度數(shù);
(3)若射線OE平分∠COD,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某工藝廠為配合北京奧運(yùn),設(shè)計了一款成本為20元∕件的工藝品投放市場進(jìn)行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價x(元/件)

30

40

50

60

每天銷售量y(件)

500

400

300

200

(1)把上表中x、y的各組對應(yīng)值作為點的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點,猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;

(2)當(dāng)銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價﹣成本總價)

(3)當(dāng)?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,AC=6cm,BC=8cm,動點P從點C出發(fā),按C→B→A的路徑,以2cm每秒的速度運(yùn)動,設(shè)運(yùn)動時間為t秒,當(dāng)t___________時,ACP是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC , BD平分∠ABC . 過點DAB的平行線,過點BAC的平行線,兩平行線相交于點EBCDE于點F , 連接CE . 求證:四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△OAB如圖所示放置在平面直角坐標(biāo)系中,直角邊OA與x軸重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB繞點O逆時針旋轉(zhuǎn)90°,點B旋轉(zhuǎn)到點C的位置,一條拋物線正好經(jīng)過點O,C,A三點.

(1)求該拋物線的解析式;

(2)在x軸上方的拋物線上有一動點P,過點P作x軸的平行線交拋物線于點M,分別過點P,點M作x軸的垂線,交x軸于E,F(xiàn)兩點,問:四邊形PEFM的周長是否有最大值?如果有,請求出最值,并寫出解答過程;如果沒有,請說明理由.

(3)如果x軸上有一動點H,在拋物線上是否存在點N,使O(原點)、C、H、N四點構(gòu)成以O(shè)C為一邊的平行四邊形?若存在,求出N點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不解方程,判斷方程2x2+3x﹣4=0的根的情況是(
A.有兩個相等的實數(shù)根
B.有兩個不相等的實數(shù)根
C.只有一個實數(shù)根
D.沒有實數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+2y軸交于A點,與反比例函數(shù)x0)的圖象交于點M,過MMHx軸于點H,且tanAHO=2

1)求k的值;

2)點Na,1)是反比例函數(shù)x0圖象上的點在x軸上是否存在點P,使得PM+PN最?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案