【題目】觀察下表:
序號 | 1 | 2 | 3 | … |
圖形 |
|
|
| … |
我們把某格中字母和所得到的多項式稱為“特征多項式”,例如第1格的“特征多項式”為.
回答下列問題:
(1)第3格的“特征多項式”為____________,
第4格的“特征多項式”為____________,
第格的“特征多項式”為____________;
(2)若第1格的“特征多項式”的值為10,第2格的“特征多項式”的值為19,求的值.
【答案】(1)第3格的“特征多項式”為,第4格的“特征多項式”為,第格的“特征多項式”為;(2)
【解析】
(1)根據(jù)表格中的數(shù)據(jù)可以分別寫出第3格、第4格、第n格對應(yīng)的“特征多項式”;
(2)根據(jù)(1)中的結(jié)果可以得到二元一次方程組,從而可以求得x、y的值,進而求得所求式子的值.
解:(1)由表格可得,
第3格的“特征多項式”為4x×4+3y×3=16x+9y,
第4格的“特征多項式”為5x×5+4y×4=25x+16y,
第n格的“特征多項式”為(n+1)2x+n2y,
故答案為:16x+9y,25x+16y,(n+1)2x+n2y;
(2)∵第1格的“特征多項式”的值為10,第2格的“特征多項式”的值為19,
∴,得
∴(3x+4y)2019=[3×3+4×(-2)]2019=(9-8)2019=1.
科目:初中數(shù)學 來源: 題型:
【題目】小明某天上午9時騎自行車離開家,15時回到家,他有意描繪了離家的距離與時間的變化情況(如圖所示).
(1)圖象表示了哪兩個變量的關(guān)系?哪個是自變量?哪個是因變量?
(2)10時和13時,他分別離家多遠?
(3)他到達離家最遠的地方是什么時間?離家多遠?
(4)11時到12時他行駛了多少千米?
(5)他可能在哪段時間內(nèi)休息,并吃午餐?
(6)他由離家最遠的地方返回時的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩地相距360千米,一輛販毒車從甲地往乙地接頭取貨,警方截取情報后,立即組織干警從甲地出發(fā),前往乙地緝拿這伙犯罪分子,結(jié)果警車與販毒車同時到達,將犯罪分子一網(wǎng)打盡.已知販毒車比警車早出發(fā)1小時15分,警車與販毒車的速度比為4∶3,求販毒車和警車的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某體育用品商店購進了足球和排球共20個,一共花了1360元,進價和售價如表:
足球 | 排球 | |
進價(元/個) | 80 | 50 |
售價(元/個) | 95 | 60 |
(l)購進足球和排球各多少個?
(2)全部銷售完后商店共獲利潤多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A,B兩地被大山阻隔,若要從A地到B地,只能沿著如圖所示的公路先從A地到C地,再由C地到B地.現(xiàn)計劃開鑿隧道A,B兩地直線貫通,經(jīng)測量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道開通后與隧道開通前相比,從A地到B地的路程將縮短多少?(結(jié)果精確到0.1km,參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點A、O、B依次在直線MN上,現(xiàn)將射線OA繞點O沿順時針方向以每秒3°的速度旋轉(zhuǎn),同時射線OB繞點O沿逆時針方向以每秒6°的速度旋轉(zhuǎn),直線MN保持不動,如圖2,設(shè)旋轉(zhuǎn)時間為t(0≤t≤60,單位秒)
(1)當t=2時,求∠AOB的度數(shù);
(2)在運動過程中,當∠AOB第二次達到63°時,求t的值;
(3)在旋轉(zhuǎn)過程中是否存在這樣的t,使得射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角(指大于0°而小于180°的角)的平分線?如果存在,請求出t的值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年5月14日至15日,“一帶一路”國際合作高峰論壇在北京舉行,本屆論壇期間,中國同30多個國家簽署經(jīng)貿(mào)合作協(xié)議,某廠準備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,請在下列四個關(guān)系中,選出兩個恰當?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關(guān)系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com