【題目】在一節(jié)數(shù)學課上,老師布置了一個任務:如圖1,在RtABC中,∠B90°,用尺規(guī)作圖作矩形ABCD.同學們開動腦筋,想出了很多辦法,其中小亮作圖如圖2,他向同學們分享了作法:

①分別以點AC為圓心,大于AC長為半徑畫弧,兩弧分別交于點E、F,連接E、FAC于點O

②作射線BO,在BO上取點D,使ODOB;

③連結(jié)ADCD則四邊形ABCD就是所求作的矩形.

請用文字寫出小亮的每一步作圖的依據(jù)①   ;②   ;③   

【答案】到線段兩端距離相等的點在線段的垂直平分線上;直角三角形斜邊上的中線等于斜邊的一半;對角線互相平分且相等的四邊形是矩形

【解析】

根據(jù)到線段兩端距離相等的點在線段的垂直平分線上可判斷EF垂直平分AC,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到BOOAOC,則由ODOB得到BOOAOCOD,從而根據(jù)矩形的判定方法可判斷四邊形ABCD就是所求作的矩形.

由作法得EF垂直平分AC,則OAOC,

BORtABC斜邊上的中線,

BOOAOC,

ODOB

BOOAOCOD,

∴四邊形ABCD為矩形.

∴小亮的作圖依據(jù)為:①到線段兩端距離相等的點在線段的垂直平分線上;②直角三角形斜邊上的中線等于斜邊的一半;③對角線互相平分且相等的四邊形是矩形.

故答案為:到線段兩端距離相等的點在線段的垂直平分線上,直角三角形斜邊上的中線等于斜邊的一半,對角線互相平分且相等的四邊形是矩形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過點 A(10)x軸的垂線,交反比例函數(shù) y= (x大于零)的圖象交于點M,已知三角形AOM的面積為3.

(1)k的值;

(2)設點B的坐標為(t,0), 若以AB為一邊的正方形ABCD有頂點在該反比例函數(shù)的圖像上t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有一塊長方形花園(如圖一所示),長為米,寬為米,現(xiàn)準備在花園中間修建橫豎兩條小路(圖中空白部分),已知橫向小路的寬是豎向小路的寬的倍,設豎向小路的寬為米(為正數(shù)).

)兩條小路的面積之和是多少?

)當時,求花園剩余部分(陰影部分)的面積;

3)若把豎向小路的寬改為原來的倍、橫向小路的寬改為原來的一半(如圖二所示),設圖一與圖二中花園剩余部分的面積分別為、,求的差.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某司機在東西路上開車接送乘客,他早晨從A地出發(fā),(去向東的方向正方向),到晚上送走最后一位客人為止,他一天行駛的的里程記錄如下(單位:㎞)

+10 ,— 5—15 ,+ 30 —20 ,—16 + 14

1) 若該車每百公里耗油 3 L ,則這車今天共耗油 多少升?

2) 據(jù)記錄的情況,你能否知道該車送完最后一個乘客是,他在A地的什么方向?距A地多遠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖象與坐標軸分別交于AB點,AE平分,交軸于點E

1)直接寫出點A和點B的坐標.

2)求直線AE的表達式.

3)過點BBFAE于點F,過點F分別作FD//OAAB于點DFC//AB軸于點C,判斷四邊形ACFD的形狀并說明理由,求四邊形ACFD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形ABC沿邊AB方向平移到BDE的位置,則圖中∠CBE=_____,連接CE后,線段CEAD的關(guān)系是______,BEC____三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是我國古代第一部數(shù)學專著,其中有這樣一道名題:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,問幾步及之?”意思是說:走路快的人走100步的時候,走路慢的才走了60步,走路慢的人先走100步,然后走路快的人去追趕,問走路快的人要走多少部才能追上?若設走路快的人要走x步才能追上走路慢的人,此時走路慢的人又走了y步,根據(jù)題意可列方程組為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 已知反比例函數(shù)的圖象的一支位于第一象限

(1)該函數(shù)圖象的另一分支位于第_____象限,m的取值范圍是____________;

(2)已知點A在反比例函數(shù)圖象上,ABx軸于點B,AOB的面積為3,求m的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料并解決問題:

1+2+22+23+…...+22014的值,另S=1+2+22+23+…...+22014

等式兩邊同時乘2,得2S=2+22+23+.......+22014+22015

兩式相減,得2S - S = 22015 -1 所以S = 22015 - 1

依據(jù)以上計算方法,計算:1 + 3 + 32 + ..... + 32019

查看答案和解析>>

同步練習冊答案