精英家教網(wǎng)如圖,已知AD=AB,AC=AE,∠DAB=∠EAC=90°,連接DC、BE
(1)請說明DC=BE的理由;
(2)請說出線段DC與BE的位置關(guān)系,并說明理由.
分析:(1)先根據(jù)∠DAB=∠EAC證明∠DAC=∠BAE,然后利用邊角邊定理證明△ADC≌△ABE,再根據(jù)全等三角形對應邊相等證明即可;
(2)根據(jù)全等三角形對應角相等得∠ACD=∠AEB,所以∠CEB+∠ACD=∠CEB+∠AEB,再根據(jù)∠EAC=90°即可證明∠CEB+∠DCE=90°,從而得到DC⊥BE.
解答:解:(1)∵∠DAB=∠EAC=90°,
∴∠DAB+∠BAC=∠EAC+∠BAC,
∴∠DAC=∠BAE;
在△ADC和△ABE中,
AD=AB
∠DAC=∠BAE
AC=AE

∴△ADC≌△ABE(SAS),
∴DC=BE(全等三角形的對應邊相等);

(2)DC⊥BE.
理由:∵△ADC≌△ABE,
∴∠ACD=∠AEB(全等三角形對應邊相等),
∴∠CEB+∠ACD=∠CEB+∠AEB,
∵∠CEB+∠AEB+∠ACE=180°-∠EAC=180°-90°=90°,
∴∠CEB+∠ACD+∠ACE=90°,
即∠CEB+∠DCE=90°,
∴DC⊥BE.
點評:本題主要考查了全等三角形的判定與全等三角形對應邊相等,對應角相等的性質(zhì),準確識圖,結(jié)合圖形,對角的準確轉(zhuǎn)換是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

5、如圖,已知AD=AB,∠ADB=30°,則∠BOC度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AD=AB=BC,若設∠1=x,∠2=y,那么x與y的關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AD=AB,AC平分∠DAB,則圖中有
3
3
對全等三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年云南玉溪洛河民族中學初一下學期期中考試數(shù)學試卷(帶解析) 題型:解答題

如圖,已知AD⊥AB,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°,那么BC⊥AB,說明理由。

查看答案和解析>>

同步練習冊答案