(2012•孝感)如圖,△ABC在平面直角坐標(biāo)系中第二象限內(nèi),頂點A的坐標(biāo)是(-2,3),先把△ABC向右平移4個單位得到△A1B1C1,再作△A1B1C1關(guān)于x軸對稱圖形△A2B2C2,則頂點A2的坐標(biāo)是( 。
分析:將△ABC向右平移4個單位得△A1B1C1,讓A的橫坐標(biāo)加4即可得到平移后A1的坐標(biāo);再把△A1B1C1以x軸為對稱軸作軸對稱圖形△A2B2C2,那么點A2的橫坐標(biāo)不變,縱坐標(biāo)為A1的縱坐標(biāo)的相反數(shù).
解答:解:∵將△ABC向右平移4個單位得△A1B1C1,
∴A1的橫坐標(biāo)為-2+4=2;縱坐標(biāo)不變?yōu)?;
∵把△A1B1C1以x軸為對稱軸作軸對稱圖形△A2B2C2,
∴A2的橫坐標(biāo)為2,縱坐標(biāo)為-3;
∴點A2的坐標(biāo)是(2,-3).
故選B.
點評:本題考查了坐標(biāo)與圖形的變化--對稱及平移的知識;認(rèn)真觀察圖形,根據(jù)各種特點做題是正確解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•孝感)如圖,AB是⊙O的直徑,AM,BN分別切⊙O于點A,B,CD交AM,BN于點D,C,DO平分∠ADC.
(1)求證:CD是⊙O的切線;
(2)若AD=4,BC=9,求⊙O的半徑R.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•孝感)如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于點D,若AC=2,則AD的長是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•孝感)如圖,在菱形ABCD中,∠A=60°,E、F分別是AB,AD的中點,DE、BF相交于點G,連接BD,CG.有下列結(jié)論:
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=
3
4
AB2
其中正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•孝感)如圖,拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸交于A,B兩點,與y軸交于點C,三個交點的坐標(biāo)分別為A(-1,0),B(3,0),C(0,3).
(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)若P為線段BD上的一個動點,過點P作PM⊥x軸于點M,求四邊形PMAC面積的最大值和此時P點的坐標(biāo);
(3)若P為拋物線在第一象限上的一個動點,過點P作PQ∥AC交x軸于點Q.當(dāng)點P的坐標(biāo)為
(2,3)
(2,3)
時,四邊形PQAC是平行四邊形;當(dāng)點P的坐標(biāo)為
11
4
15
16
11
4
,
15
16
時,四邊形PQAC是等腰梯形(直接寫出結(jié)果,不寫求解過程).

查看答案和解析>>

同步練習(xí)冊答案