如圖,在平面直角坐標(biāo)系中,直線與拋物線y=ax2+bx-3(a≠0)交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的縱坐標(biāo)為5.點(diǎn)P是直線AB下方的拋物線上的一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,作PD⊥AB于點(diǎn)D.
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為m.
①用含m的代數(shù)式表示線段PD的長(zhǎng),并求出線段PD長(zhǎng)的最大值;
②連結(jié)PB,線段PC把△PDB分成兩個(gè)三角形,是否存在適合的m的值,使這兩個(gè)三角形的面積比為1:2.若存在,直接寫出m的值;若不存在,請(qǐng)說明理由.

(1);(2)①;②0或3.

解析試題分析:(1)在y=x+1中,當(dāng)y=0時(shí),x=-1;當(dāng)y=5時(shí),x=4,依此可得A與B的坐標(biāo);將A與B坐標(biāo)代入拋物線解析式求出a與b的值,即可確定出拋物線解析式;
(2)①設(shè)直線AB與y軸交于點(diǎn)E,由CP與y軸平行,得到∠ACP=∠AEO,求出AE與OA的長(zhǎng),得出sin∠AEO的值,即為sin∠ACP的值,由P的橫坐標(biāo)為m,分別代入直線與拋物線解析式得到兩個(gè)縱坐標(biāo)之差為PC的長(zhǎng),由PD=PCsin∠ACP表示出PD,利用二次函數(shù)的性質(zhì)求出PD的最大值即可;
②存在,過D作DF⊥CP,過B作BG⊥PQ,交PC延長(zhǎng)線與點(diǎn)Q,表示出DF與BG,進(jìn)而表示出三角形DCP面積與三角形BCP面積,根據(jù)面積之比為1:2列出關(guān)于m的方程,求出方程的解得到m的值即可.
試題解析:(1)在中,當(dāng)y=0時(shí),x=-1;當(dāng)y=5時(shí),x=4.
∴A(-1,0)、B(4,5) .
將A(-1,0)、B(4,5)分別代入y=ax2+bx-3中,得
,解得
∴所求解析式為.
(2)①設(shè)直線AB交y軸于點(diǎn)E,求得E(0,1),∴OA=OE,∠AEO=45°,∠ACP=∠AEO="45°,"
. 
設(shè),則,


∴PD的最大值為
②當(dāng)m=0或m=3時(shí),PC把△PDB分成兩個(gè)三角形的面積比為1:2.
如圖,過D作DF⊥CP,過B作BG⊥PQ,交PC延長(zhǎng)線與點(diǎn)Q,
∵sin∠ACP=,∴cos∠ACP=.
在Rt△PDF中,DF=DP•sin∠DPC=DP•cos∠ACP=.
又∵BG=4-m,
.
當(dāng)時(shí),解得:m=0;
當(dāng) 2時(shí),解得:m=3.
故當(dāng)m=0或m=3時(shí),PC把△PDB分成兩個(gè)三角形的面積比為1:2.

考點(diǎn):1.二次函數(shù)綜合題;2.待定系數(shù)法求函數(shù)解析式;3.坐標(biāo)與圖形性質(zhì);4.二次函數(shù)的圖象與性質(zhì);5.銳角三角函數(shù)定義;6.三角形的面積求法;7.分類思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,二次函數(shù)的圖像與軸交于點(diǎn)A,B(點(diǎn)B在點(diǎn)A的左側(cè)),與軸交于點(diǎn)C,過動(dòng)點(diǎn)H(0, )作平行于軸的直線,直線與二次函數(shù)的圖像相交于點(diǎn)D,E.
(1)寫出點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)若,以DE為直徑作⊙Q,當(dāng)⊙Q與軸相切時(shí),求的值;
(3)直線上是否存在一點(diǎn)F,使得△ACF是等腰直角三角形?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某水果店銷售某中水果,由歷年市場(chǎng)行情可知,從第1月至第12月,這種水果每千克售價(jià)y1(元)與銷售時(shí)間第x月之間存在如圖1(一條線段)的變化趨勢(shì),每千克成本y2(元)與銷售時(shí)間第x月滿足函數(shù)關(guān)系式y(tǒng)2=mx2﹣8mx+n,其變化趨勢(shì)如圖2.

(1)求y2的解析式;
(2)第幾月銷售這種水果,每千克所獲得利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線經(jīng)過點(diǎn)A(3,2),B(0,1)和點(diǎn)C
(1)求拋物線的解析式;
(2)如圖,若拋物線的頂點(diǎn)為P,點(diǎn)A關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)為M,過M的直線交拋物線于另一點(diǎn)N(N在對(duì)稱軸右邊),交對(duì)稱軸于F,若,求點(diǎn)F的坐標(biāo);
(3)在(2)的條件下,在y軸上是否存在點(diǎn)G,使△BMA與△MBG相似?若存在,求點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知二次函數(shù)的圖象與x軸的正半軸交于A 、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C .點(diǎn)A和點(diǎn)B間的距離為2, 若將二次函數(shù)的圖象沿y軸向上平移3個(gè)單位時(shí),則它恰好過原點(diǎn),且與x軸兩交點(diǎn)間的距離為4.
(1)求二次函數(shù)的表達(dá)式;
(2)在二次函數(shù)的圖象的對(duì)稱軸上是否存在一點(diǎn)P,使點(diǎn)P到B、C兩點(diǎn)距離之差最大?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由;
(3)設(shè)二次函數(shù)的圖象的頂點(diǎn)為D,在x軸上是否存在這樣的點(diǎn)F,使得?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線y=x2+bx+c經(jīng)過A(-1, 0)、B(4, 5)兩點(diǎn),過點(diǎn)B作BC⊥x軸,垂足為C.
(1)求拋物線的解析式;
(2)求tan∠ABO的值;
(3)點(diǎn)M是拋物線上的一個(gè)點(diǎn),直線MN平行于y軸交直線AB于N,如果以M、N、B、C為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)M的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,A是拋物線上的一個(gè)動(dòng)點(diǎn),且點(diǎn)A在第一象限內(nèi).AE⊥y軸于點(diǎn)E,點(diǎn)B坐標(biāo)為(O,2),直線AB交軸于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于y軸對(duì)稱,直線DE與AB相交于點(diǎn)F,連結(jié)BD.設(shè)線段AE的長(zhǎng)為m,△BED的面積為S.
(1)當(dāng)時(shí),求S的值.
(2)求S關(guān)于的函數(shù)解析式.
(3)①若S=時(shí),求的值;
②當(dāng)m>2時(shí),設(shè),猜想k與m的數(shù)量關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知一個(gè)二次函數(shù)的關(guān)系式為 y=x2-2bx+c.
(1)若該二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),
①則b、c 應(yīng)滿足關(guān)系為                ;
②若該二次函數(shù)的圖象經(jīng)過A(m,n)、B(m +6,n)兩點(diǎn),求n的值;
(2)若該二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn)C(6,0)、D(k,0),線段CD(含端點(diǎn))上有若干個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),且這些點(diǎn)的橫坐標(biāo)之和為21,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知二次函數(shù)的圖像經(jīng)過原點(diǎn)及點(diǎn)A(1,2),與x軸相交于另一點(diǎn)B(3,0),將點(diǎn)B向右平移3個(gè)單位得點(diǎn)C.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)M在線段OC上,平面內(nèi)有一點(diǎn)Q,使得四邊形ABMQ為菱形,求點(diǎn)M坐標(biāo);
(3)點(diǎn)P在線段OC上,從O點(diǎn)出發(fā)向C點(diǎn)運(yùn)動(dòng),過P點(diǎn)作x軸的垂線,交直線AO于D點(diǎn),以PD為邊在PD的右側(cè)作正方形PDEF(當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)D、點(diǎn)E、點(diǎn)F也隨之運(yùn)動(dòng));
①當(dāng)點(diǎn)E在二次函數(shù)的圖像上時(shí),求OP的長(zhǎng);
②若點(diǎn)P從O點(diǎn)出發(fā)向C點(diǎn)做勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,若P點(diǎn)運(yùn)動(dòng)t秒時(shí),直線AC與以DE為直徑的⊙M相切,直接寫出此刻t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案