把二次函數(shù)數(shù)學(xué)公式的圖象向右平移2個(gè)單位后,再向上平移3個(gè)單位,所得的函數(shù)圖象頂點(diǎn)是


  1. A.
    (-5,1)
  2. B.
    (1,-5)
  3. C.
    (-1,1)
  4. D.
    (-1,3)
C
分析:用配方法可將拋物線一般式轉(zhuǎn)化為頂點(diǎn)式,再利用平移規(guī)律求平移后的頂點(diǎn)坐標(biāo).
解答:∵y=x2+3x+
=(x2+6x)+
=(x+3)2-2;
∴圖象先向右平移2個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位后,得出:y=(x+1)2+1;
得到頂點(diǎn)坐標(biāo)為(-1,1).
故選:C.
點(diǎn)評(píng):本題主要考查了函數(shù)圖象的平移,拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo)的求法,要求熟練掌握平移的規(guī)律:左加右減,上加下減.并用規(guī)律求函數(shù)解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,對(duì)稱軸為y軸.一次函數(shù)y=kx+1的圖象與二次函數(shù)的圖象交于A,B兩點(diǎn)(A在B的左側(cè))精英家教網(wǎng),且A點(diǎn)坐標(biāo)為(-4,4).平行于x軸的直線l過(guò)(0,-1)點(diǎn).
(1)求一次函數(shù)與二次函數(shù)的解析式;
(2)判斷以線段AB為直徑的圓與直線l的位置關(guān)系,并給出證明;
(3)把二次函數(shù)的圖象向右平移2個(gè)單位,再向下平移t個(gè)單位(t>0),二次函數(shù)的圖象與x軸交于M,N兩點(diǎn),一次函數(shù)圖象交y軸于F點(diǎn).當(dāng)t為何值時(shí),過(guò)F,M,N三點(diǎn)的圓的面積最小,最小面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•攀枝花)已知二次函數(shù)的頂點(diǎn)C的橫坐標(biāo)為1,一次函數(shù)y=kx+2的圖象與二次函數(shù)的圖象交于A、B兩點(diǎn),且A點(diǎn)在y軸上,以C為圓心,CA為半徑的⊙C與x軸相切,
(1)求二次函數(shù)的解析式;
(2)若B點(diǎn)的橫坐標(biāo)為3,過(guò)拋物線頂點(diǎn)且平行于x軸的直線為l,判斷以AB為直徑的圓與直線l的位置關(guān)系;
(3)在滿足(2)的條件下,把二次函數(shù)的圖象向右平移7個(gè)單位,向下平移t個(gè)單位(t>2)的圖象與x軸交于E、F兩點(diǎn),當(dāng)t為何值時(shí),過(guò)B、E、F三點(diǎn)的圓的面積最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•惠安縣質(zhì)檢)已知二次函數(shù)y=
14
x2
的圖象與一次函數(shù)y=kx+1的圖象交于A,B兩點(diǎn)(A在B的左側(cè)),且A點(diǎn)坐標(biāo)為(-4,4).
(1)求一次函數(shù)的解析式;
(2)若平行于x軸的直線l過(guò)(0,-1)點(diǎn),試判斷以線段AB為直徑的圓與直線l的位置關(guān)系,并說(shuō)明理由;
(3)把二次函數(shù)的圖象向右平移2個(gè)單位,再向下平移t個(gè)單位(t>0),得到的二次函數(shù)的圖象與x軸交于M,N兩點(diǎn),一次函數(shù)圖象交y軸于F點(diǎn).當(dāng)t為何值,過(guò)F,M,N三點(diǎn)的圓的面積最?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,對(duì)稱軸為y軸.一次函數(shù)y=kx+1的圖象與二次函數(shù)的圖象交于A,B兩精英家教網(wǎng)點(diǎn)(A在B的左側(cè)),且A點(diǎn)坐標(biāo)為(-4,4).平行于x軸的直線l過(guò)(0,-1)點(diǎn).
(1)求一次函數(shù)與二次函數(shù)的解析式;
(2)判斷以線段AB為直徑的圓與直線l的位置關(guān)系,并給出證明;
(3)把二次函數(shù)的圖象向右平移2個(gè)單位,再向下平移t個(gè)單位(t>0),二次函數(shù)的圖象與x軸交于M,N兩點(diǎn),一次函數(shù)圖象交y軸于F點(diǎn).當(dāng)t為何值時(shí),過(guò)F,M,N三點(diǎn)的圓的面積最。孔钚∶娣e是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:山東省中考真題 題型:解答題

已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,對(duì)稱軸為y軸,一次函數(shù)y=kx+1的圖象與二次函數(shù)的圖象交于A,B兩點(diǎn)(A在B的左側(cè)),且A點(diǎn)坐標(biāo)為(-4,4),平行于x軸的直線l過(guò)(0,-1)點(diǎn)。

(1)求一次函數(shù)與二次函數(shù)的解析式;
(2)判斷以線段AB為直徑的圓與直線l的位置關(guān)系,并給出證明;
(3)把二次函數(shù)的圖象向右平移2個(gè)單位,再向下平移t個(gè)單位(t>0),二次函數(shù)的圖象與x軸交于M,N兩點(diǎn),一次函數(shù)圖象交y軸于F點(diǎn),當(dāng)t為何值時(shí),過(guò)F,M,N三點(diǎn)的圓的面積最小,最小面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案