折疊長方形紙片ABCD(四個(gè)內(nèi)角都是直角)的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8cm,BC=10cm.
(1)求BF的長;
(2)求EF的長.
(1)設(shè)EC=xcm,
在正方形ABCD中,∠B=∠C=90°,BC=AD=10cm,AB=CD=8cm,
由折疊性質(zhì)知:AD=AF=10cm,DE=EF=(8-x)cm,
在Rt△ABF中,BF=
AF2-AB2
=
102-82
=6(cm);

(2)由(1)知BF=6cm,
則CF=BC-BF=4cm,
在Rt△FCE中,由勾股定理得:42+x2=(8-x)2
∵x>0,
∴x=3,
即CE=3cm,
∴EF=8-3=5(cm).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC=150°,則∠θ的度數(shù)是( 。
A.60°B.50°C.40°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知正方形ABCD,點(diǎn)P、Q分別是邊AD、BC上的兩動(dòng)點(diǎn),將四邊形ABQP沿PQ翻折得到四邊形EFQP,點(diǎn)E在線段CD上,EF交BC于G,連接AE.
求證:
(1)EA平分∠DEF;
(2)EC+EG+GC=2AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,A(2,3),B(3,1),C(-2,-2).
(1)在圖中作出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1
(2)寫出點(diǎn)A1,B1,C1的坐標(biāo)(直接寫答案).
A1______;B1______;C1______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,矩形紙片ABCD的邊長AB=4cm,AD=2cm.同學(xué)小明現(xiàn)將該矩形紙片沿EF折痕,使點(diǎn)A與點(diǎn)C重合,折痕后在其一面著色(如圖2),觀察圖形對(duì)比前后變化,回答下列問題:
(1)GF______FD:(直接填寫=、>、<)
(2)判斷△CEF的形狀,并說明理由;
(3)小明通過此操作有以下兩個(gè)結(jié)論:
①四邊形EBCF的面積為4cm2
②整個(gè)著色部分的面積為5.5cm2
運(yùn)用所學(xué)知識(shí),請(qǐng)論證小明的結(jié)論是否正確.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

附圖(①)為一張三角形ABC紙片,P點(diǎn)在BC上.今將A折至P時(shí),出現(xiàn)折線BD,其中D點(diǎn)在AC上,如圖(②)所示.若△ABC的面積為80,△DBC的面積為50,則BP與PC的長度比為何?(  )
A.3:2B.5:3C.8:5D.13:8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形網(wǎng)格上有一個(gè)△ABC.
(1)作△ABC關(guān)于直線MN的對(duì)稱圖形(不寫作法);
(2)若網(wǎng)格上的最小正方形的邊長為1,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點(diǎn)D落在D′處,則重疊部分△AFC的面積是( 。
A.8B.10C.20D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

臺(tái)球是一項(xiàng)高雅的體育運(yùn)動(dòng).其中包含了許多物理學(xué)、幾何學(xué)知識(shí).圖①是一個(gè)臺(tái)球桌,目標(biāo)球F與本球E之間有一個(gè)G球阻擋
(1)擊球者想通過擊打E球先撞擊球臺(tái)的AB邊.經(jīng)過一次反彈后再撞擊F球.他應(yīng)將E球打到AB邊上的哪一點(diǎn),請(qǐng)?jiān)趫D①中用尺規(guī)作出這一點(diǎn)H,并作出E球的運(yùn)行路線;(不寫畫法.保留作圖痕跡)
(2)如圖②,現(xiàn)以D為原點(diǎn),建立直角坐標(biāo)系,記A(0,4),C(8,0),E(4,3),F(xiàn)(7,1),求E球接剛才方式運(yùn)行到F球的路線長度.(忽略球的大小)

查看答案和解析>>

同步練習(xí)冊(cè)答案