解方程
2
x2+4
3
x=2
2
,有一位同學(xué)解答如下:
解:這里a=
2
,b=4
3
,c=2
2

∴b2-4ac=((4
3
)2
-4
2
×2
2
=32

x=
-b±
b2-4ab
2a
=
-4
3
+
32
2
2
=-
6
±2

x1=-
6
+2,x2=-
6
-2

請(qǐng)你分析以上解答有無(wú)錯(cuò)誤,如有錯(cuò)誤,指出錯(cuò)誤的地方,并寫(xiě)出正確的結(jié)果.
分析:這位同學(xué)沒(méi)有把方程化為一般式就使用求根公式,導(dǎo)致c的值錯(cuò)誤,整個(gè)解題錯(cuò)誤.
先要把方程化為一般形式:
2
x2+4
3
x-2
2
=0,則a=
2
,b=4
3
,c=-2
2
,△=b2-4ac=(4
3
2-4×
2
×(-2
2
)=64,然后代入求根公式計(jì)算即可.
解答:解:這位同學(xué)的解答過(guò)程中有錯(cuò)誤,利用公式法解一元二次方程時(shí),確定a,b,c的值應(yīng)先把一元二次方程化成一般形式,再確定a,b,c的值.
正確的解答過(guò)程是:
原方程整理為:
2
x2+4
3
x-2
2
=0,
∵a=
2
,b=4
3
,c=-2
2
,
∴△=b2-4ac=(4
3
2-4×
2
×(-2
2
)=64,
∴x=
-4
3
±
64
2
=
-4
3
±8
2
2
=-
6
±2
2
,
所以x1=-
6
+2
2
,x2=-
6
-2
2
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的解法.可以直接利用它的求根公式求解,它的求根公式為:x=
-b±
b2-4ac
2a
(b2-4ac≥0);用求根公式求解時(shí),先要把方程化為一般式,確定a,b,c的值,計(jì)算出△=b2-4ac,然后代入公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

選用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?br />(1)(x+1)(6x-5)=0;
(2)2x2+
3
x-9=0;
(3)2(x+5)2=x(x+5);
(4)
2
x2-4
3
x-2
2
=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程:
(1)2x2-4x-9=0(用配方法解)
(2)3x2-4
3
x+2=0
(用公式法解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

配方法解方程2x2-
4
3
x-2=0
變形正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

解方程
2
x2+4
3
x=2
2
,有一位同學(xué)解答如下:
這里a=
2
,b=4
3
,c=2
2

∴b2-4ac=((4
3
)2
-4
2
×2
2
=32

x=
-b±
b2-4ab
2a
=
-4
3
+
32
2
2
=-
6
±2

x1=-
6
+2,x2=-
6
-2

請(qǐng)你分析以上解答有無(wú)錯(cuò)誤,如有錯(cuò)誤,指出錯(cuò)誤的地方,并寫(xiě)出正確的結(jié)果.

查看答案和解析>>

同步練習(xí)冊(cè)答案