【題目】如圖,在△ABC中,ABAC,∠A108°,BD平分∠ABCAC于點D

1)填空:∠DBC=_________度;

2)猜想:BCABCD三者數(shù)量關(guān)系_____________________;

3)證明你的猜想.

【答案】118;(2BC=AB+CD;(3)證明詳見解析

【解析】

1)根據(jù)等腰三角形的性質(zhì)及三角形的內(nèi)角和得出∠ABC的度數(shù),再根據(jù)角平分線的定義可得出結(jié)果;
2)通過觀察可初步猜想BC=AB+CD;

3)在線段BC上截取BE=BA,連接DE.先證明△ABD≌△EBD,再結(jié)合角度證明∠CDE=CED,從而有CD=CE,最后通過等量代換即可得出結(jié)果.

解:(1)∵AB=AC,∠A=108°,

∴∠ACB=ABC=×(180°-108°)=36°,
BD平分∠ABC,

∴∠DBC=ABD=18°.

故答案為:18;

2BC=AB+CD.證明見(3),

故答案為:BC=AB+CD

3)證明:在線段BC上截取BE=BA,連接DE


BD平分∠ABC
∴∠ABD=EBD,
在△ABD和△EBD中,

,

∴△ABD≌△EBDSAS),
∴∠BED=A=108°,∴∠DEC=72°,

又∵∠C=36°,

∴∠CED=CDE=72°,∴CD=CE,

BC=BE+EC=AB+CD

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC 中,C=90°,將ABC 繞點 C 順時針旋轉(zhuǎn) 90°,得到DEC其中點 D、E 分別是 A、B 兩點旋轉(zhuǎn)后的對應(yīng)點).

(1)請畫出旋轉(zhuǎn)后的△DEC;

(2)試判斷 DE AB 的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,平分,點的中點,若,則的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司10名銷售員,去年完成的銷售額情況如表:

銷售額(單位:萬元)

3

4

5

6

7

8

10

銷售員人數(shù)(單位:人)

1

3

2

1

1

1

1

(1)求銷售額的平均數(shù)、眾數(shù)、中位數(shù);

(2)今年公司為了調(diào)動員工積極性,提高年銷售額,準備采取超額有獎的措施,請根據(jù)(1)的結(jié)果,通過比較,合理確定今年每個銷售員統(tǒng)一的銷售額標準是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:在△ABC中,ABBC邊上的垂直平分線相交于點P.若∠BAC=50°,則∠BPC的度數(shù)為( 。

A.100°B.110°C.115°D.120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,點邊上一定點,且,點是線段上一動點,連接,以為斜邊在的右側(cè)作等腰直角.當點從點出發(fā)運動至點停止時,點的運動的路徑長為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2-2x-3與x軸交于A、B兩點,與y軸交于點C.

(1)點A的坐標為 點B的坐標為 ,點C的坐標為 ;

(2)設(shè)拋物線y=x2-2x-3的頂點坐標為M,求四邊形ABMC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個滑道由滑坡(AB段)和緩沖帶(BC段)組成,滑雪者在滑坡上滑行的距離y1(單位:m)和滑行時間t1(單位s)滿足二次函數(shù)關(guān)系,并測得相關(guān)數(shù)據(jù):

滑行時間t1/s

0

1

2

3

4

滑行距離y1/s

0

4.5

14

28.5

48

滑雪者在緩沖帶上滑行的距離y2(單位:m)和滑行時間t2(單位:s)滿足:y2=52t2﹣2t22,滑雪者從A出發(fā)在緩沖帶BC上停止,一共用了23s.

(1)求y1和t1滿足的二次函數(shù)解析式;

(2)求滑坡AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,則下

列結(jié)論:①,②,③,④,⑤ 中正確的是( )

A. ②④⑤ B. ①②④ C. ①③④ D. ①③④⑤

查看答案和解析>>

同步練習冊答案