【題目】如圖,已知∠1=∠2,要說(shuō)明ABDACD,還需從下列條件中選一個(gè),錯(cuò)誤的選法是(

A. ADB=∠ADCB. B=∠CC. DBDCD. ABAC

【答案】C

【解析】

先要確定現(xiàn)有已知在圖形上的位置,結(jié)合全等三角形的判定方法對(duì)選項(xiàng)逐一驗(yàn)證,排除錯(cuò)誤的選項(xiàng).本題中C、AB=AC與∠1=2、AD=AD組成了SSA是不能由此判定三角形全等的.

解:A、加∠ADB=ADC,∵∠1=2,AD=AD,∠ADB=ADC,∴△ABD≌△ACDASA),是正確選法;
B、加∠B=C∵∠1=2,AD=AD,∠B=C,∴△ABD≌△ACDAAS),是正確選法;
C、加DB=DC,滿足SSA,不能得出ABD≌△ACD,是錯(cuò)誤選法;
D、加AB=AC,∵∠1=2,AD=AD,AB=AC,∴△ABD≌△ACDSAS),是正確選法.
故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小亮和小芳都想?yún)⒓訉W(xué)校杜團(tuán)組織的暑假實(shí)踐活動(dòng),但只有一個(gè)名額,小亮提議用如下的辦法決定誰(shuí)去等加活動(dòng):將一個(gè)轉(zhuǎn)盤(pán)9等分,分別標(biāo)上1至9九個(gè)號(hào)碼,隨意轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),

若轉(zhuǎn)到2的倍數(shù),小亮去參加活動(dòng);轉(zhuǎn)到3的倍數(shù),小芳去參加活動(dòng);轉(zhuǎn)到其它號(hào)碼則重新特動(dòng)轉(zhuǎn)盤(pán).

(1)轉(zhuǎn)盤(pán)轉(zhuǎn)到2的倍數(shù)的概率是多少?

(2)你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=+bx+c的圖象經(jīng)過(guò)A20)、B0,6)兩點(diǎn).

1)求這個(gè)二次函數(shù)的解析式;

2)求當(dāng)x滿足什么條件時(shí),函數(shù)值大于0?;

3)設(shè)該二次函數(shù)的對(duì)稱軸與x軸交于點(diǎn)C,連接BA、BC,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),ABC經(jīng)過(guò)平移得到的ABC,ABC中任意一點(diǎn)Px1,y1)平移后的對(duì)應(yīng)點(diǎn)為Px1+6y1+4).

1)請(qǐng)?jiān)趫D中作出ABC;

2)寫(xiě)出點(diǎn)A、B、C的坐標(biāo);

3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使DC=BD,連接AC,過(guò)點(diǎn)DDEACE

(1)求證:AB=AC;

(2)求證:DE為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中, AB=10AD=5 ,CD=12.連接AC,若AC=BC=13,則四邊形ABCD的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,AEBC于點(diǎn)E,FAB邊上一點(diǎn),連接CF,交AE于點(diǎn)G,CFCBAE

1)若AB,BC,求CE的長(zhǎng);

2)求證:BECGAG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長(zhǎng)),另外三邊用總長(zhǎng)54米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為2米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的而積最大?下面是兩位學(xué)生爭(zhēng)議的情境:請(qǐng)根據(jù)上面的信息,解決問(wèn)題:

1)設(shè)ABx米(x0),試用含x的代數(shù)式表示BC的長(zhǎng);

2)請(qǐng)你判斷誰(shuí)的說(shuō)法正確,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,P為邊AB上一點(diǎn)

(1) 如圖1,若∠ACPB,求證:AC2AP·AB

(2) MCP的中點(diǎn),AC2

如圖2,若∠PBMACPAB3,求BP的長(zhǎng);

如圖3,若∠ABC45°,ABMP60°,直接寫(xiě)出BP的長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案