已知

(1)請(qǐng)嘗試通過(guò)對(duì)上式適當(dāng)變形,寫(xiě)出一個(gè)以為未知數(shù)的一元二次方程;

(2)求代數(shù)式的值.

 

【答案】

(1) ,

,∴,

整理得

(學(xué)生若寫(xiě),本小題亦給全分)

(2)∵,

==0

【解析】(1)先將m進(jìn)行分母有理化,然后根據(jù)一元二次方程的定義求解即可;

(2)根據(jù)(1)中的結(jié)論,提取出m2010,然后即可求解.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•新華區(qū)一模)我們知道:根據(jù)二次函數(shù)的圖象,可以直接確定二次函數(shù)的最大(。┲担桓鶕(jù)“兩點(diǎn)之間,線段最短”,并運(yùn)用軸對(duì)稱的性質(zhì),可以在一條直線上找到一點(diǎn),使得此點(diǎn)到這條直線同側(cè)兩定點(diǎn)之間的距離之和最短.
這種數(shù)形結(jié)合的思想方法,非常有利于解決一些數(shù)學(xué)和實(shí)際問(wèn)題中的最大(。┲祮(wèn)題.請(qǐng)你嘗試解決一下問(wèn)題:
(1)在圖1中,拋物線所對(duì)應(yīng)的二次函數(shù)的最大值是
4
4

(2)在圖2中,相距3km的A、B兩鎮(zhèn)位于河岸(近似看做直線l)的同側(cè),且到河岸的距離AC=1千米,BD=2千米,現(xiàn)要在岸邊建一座水塔,分別直接給兩鎮(zhèn)送水,為使所用水管的長(zhǎng)度最短,請(qǐng)你:
①作圖確定水塔的位置;
②求出所需水管的長(zhǎng)度(結(jié)果用準(zhǔn)確值表示)
(3)已知x+y=6,求
x2+9
+
y2+25
的最小值;
此問(wèn)題可以通過(guò)數(shù)形結(jié)合的方法加以解決,具體步驟如下:
①如圖3中,作線段AB=6,分別過(guò)點(diǎn)A、B,作CA⊥AB,DB⊥AB,使得CA=
3
3
,DB=
5
5
;
②在AB上取一點(diǎn)P,可設(shè)AP=
x
x
,BP=
y
y

x2+9
+
y2+25
的最小值即為線段
PC
PC
和線段
PD
PD
長(zhǎng)度之和的最小值,最小值為
10
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇省興化市板橋初級(jí)中學(xué)九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

已知
(1)請(qǐng)嘗試通過(guò)對(duì)上式適當(dāng)變形,寫(xiě)出一個(gè)以為未知數(shù)的一元二次方程;
(2)求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)學(xué)公式
(1)請(qǐng)嘗試通過(guò)對(duì)上式適當(dāng)變形,寫(xiě)出一個(gè)以m為未知數(shù)的一元二次方程;
(2)求代數(shù)式m2012-2m2011-2011m2010的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省泰州市興化市板橋初級(jí)中學(xué)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知
(1)請(qǐng)嘗試通過(guò)對(duì)上式適當(dāng)變形,寫(xiě)出一個(gè)以m為未知數(shù)的一元二次方程;
(2)求代數(shù)式m2012-2m2011-2011m2010的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案