【題目】探究題

(1)【問題發(fā)現(xiàn)】
如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為
(2)【拓展研究】
在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請(qǐng)僅就圖2的情形給出證明;
(3)【問題發(fā)現(xiàn)】
當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫出線段AF的長.

【答案】
(1)解:BE= AF
(2)

解:無變化;

如圖2,在Rt△ABC中,AB=AC=2,

∴∠ABC=∠ACB=45°,

∴sin∠ABC= = ,

在正方形CDEF中,∠FEC= ∠FED=45°,

在Rt△CEF中,sin∠FEC=

,

∵∠FCE=∠ACB=45°,

∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,

∴∠FCA=∠ECB,

∴△ACF∽△BCE,

,

∴BE= AF,

∴線段BE與AF的數(shù)量關(guān)系無變化


(3)

解:當(dāng)點(diǎn)E在線段AF上時(shí),如圖2,

由(1)知,CF=EF=CD= ,

在Rt△BCF中,CF= ,BC=2 ,

根據(jù)勾股定理得,BF=

∴BE=BF﹣EF= ,

由(2)知,BE= AF,

∴AF= ﹣1,

當(dāng)點(diǎn)E在線段BF的延長線上時(shí),如圖3,

在Rt△ABC中,AB=AC=2,

∴∠ABC=∠ACB=45°,

∴sin∠ABC= = ,

在正方形CDEF中,∠FEC= ∠FED=45°,

在Rt△CEF中,sin∠FEC=

,

∵∠FCE=∠ACB=45°,

∴∠FCB+∠ACB=∠FCB+∠FCE,

∴∠FCA=∠ECB,

∴△ACF∽△BCE,

,

∴BE= AF,

由(1)知,CF=EF=CD=

在Rt△BCF中,CF= ,BC=2 ,

根據(jù)勾股定理得,BF= ,

∴BE=BF+EF= +

由(2)知,BE= AF,

∴AF= +1.

即:當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,線段AF的長為 ﹣1或 +1.


【解析】解:(1)在Rt△ABC中,AB=AC=2,
根據(jù)勾股定理得,BC= AB=2 ,
點(diǎn)D為BC的中點(diǎn),
∴AD= BC= ,
∵四邊形CDEF是正方形,
∴AF=EF=AD= ,
∵BE=AB=2,
∴BE= AF,
故答案為BE= AF;
(1)先利用等腰直角三角形的性質(zhì)得出AD= ,再得出BE=AB=2,即可得出結(jié)論;(2)先利用三角函數(shù)得出 ,同理得出 ,夾角相等即可得出△ACF∽△BCE,進(jìn)而得出結(jié)論;(3)分兩種情況計(jì)算,當(dāng)點(diǎn)E在線段BF上時(shí),如圖2,先利用勾股定理求出EF=CF=AD= ,BF= ,即可得出BE= ,借助(2)得出的結(jié)論,當(dāng)點(diǎn)E在線段BF的延長線上,同前一種情況一樣即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】類比、轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個(gè)案例,請(qǐng)補(bǔ)充完整. 原題:如圖1,在平行四邊形ABCD中,點(diǎn)E是BC的中點(diǎn),點(diǎn)F是線段AE上一點(diǎn),BF的延長線交射線CD于點(diǎn)G.若 =3,求 的值.

(1)嘗試探究 在圖1中,過點(diǎn)E作EH∥AB交BG于點(diǎn)H,則AB和EH的數(shù)量關(guān)系是 , CG和EH的數(shù)量關(guān)系是 的值是
(2)類比延伸 如圖2,在原題的條件下,若 =m(m>0),求 的值(用含有m的代數(shù)式表示),試寫出解答過程.
(3)拓展遷移 如圖3,梯形ABCD中,DC∥AB,點(diǎn)E是BC的延長線上的一點(diǎn),AE和BD相交于點(diǎn)F.若 =a, =b,(a>0,b>0),則 的值是(用含a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的解題過程,并在括號(hào)內(nèi)填上依據(jù).如圖,EFAD,1=2,BAC=85°.求∠AGD的度數(shù)

解: EFAD,

∴∠2=____( )

又∵∠1=2

∴∠1=3

____( )

∴∠BAC+____=180°

∵∠BAC=85°

∴∠AGD=950

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)于與坐標(biāo)軸不平行的直線l和點(diǎn)P,給出如下定義:過點(diǎn)Px軸,y軸的垂線,分別交直線l于點(diǎn)M,N,若PM+PN≤4,則稱P為直線l的近距點(diǎn),特別地,直線上l所有的點(diǎn)都是直線l的近距點(diǎn).已知點(diǎn)A(-,0),B(0,2),C(-2,2).

(1)當(dāng)直線l的表達(dá)式為y=x時(shí),

①在點(diǎn)AB,C中,直線l的近距點(diǎn)是 ;

②若以OA為邊的矩形OAEF上所有的點(diǎn)都是直線l的近距點(diǎn),求點(diǎn)E的縱坐標(biāo)n的取值范圍;

(2)當(dāng)直線l的表達(dá)式為y=kx時(shí),若點(diǎn)C是直線l的近距點(diǎn),直接寫出k的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在求1+3+32+33+34+35+36+37+38的值時(shí),李敏發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的3倍,于是她假設(shè):S=1+3+32+33+34+35+36+37+38,

然后在①式的兩邊都乘3,得3S=3+32+33+34+35+36+37+38+39

①得,3S-S=39-1,即2S=39-1,

所以S=.

得出答案后,愛動(dòng)腦筋的張紅想:如果把“3”換成字母a(a≠0a≠1),能否求出1+a+a2+a3+a4+…+a2 017的值?如能求出,其正確答案是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,,E、F分別是AB、CD的中點(diǎn)

求證:四邊形AECF是平行四邊形;

是否存在a的值使得四邊形AECF為菱形,若存在求出a的值,若不存在說明理由;

如圖,點(diǎn)P是線段AF上一動(dòng)點(diǎn)且

求證:;

直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順指針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去…,若點(diǎn)A( ,0),B(0,4),則點(diǎn)B2016的橫坐標(biāo)為( )

A.5
B.12
C.10070
D.10080

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于一次函數(shù)y=kx+b,當(dāng)自變量x的取值為﹣2≤x≤5時(shí),相應(yīng)的函數(shù)值的范圍為﹣6≤y≤﹣3,則該函數(shù)的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知Rt△ABC,∠C=90°,AC≠BC.

(1)請(qǐng)用尺規(guī)作圖(不寫作法,保留作圖痕跡).
①作∠B的角平分線,與AC相交于點(diǎn)D;
②以點(diǎn)B為圓心、BC為半徑畫弧交AB于點(diǎn)E,連接DE.
(2)根據(jù)(1)所作的圖形,寫出一對(duì)全等三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案