【題目】某公司需招聘一名員工,對(duì)應(yīng)聘者甲、乙、丙從筆試、面試、體能三個(gè)方面進(jìn)行量化考核,甲、乙、丙各項(xiàng)得分如下表:

考核人員

筆試

面試

體能

平均分

83

79

90

84

86

80

x

80

80

90

73

y

1)根據(jù)表格中的數(shù)據(jù)信息,求得x=_____;y=____.

2)該公司規(guī)定:筆試、面試、體能得分分別不得低于80分,80分,70分,并按50%,30%,20%的比例計(jì)入總分.請(qǐng)你根據(jù)規(guī)定,計(jì)算說(shuō)明誰(shuí)將被錄用.

【答案】1x=74;y=81;(2)乙將被錄用.

【解析】

1)利用平均數(shù)公式:由乙的平均數(shù)=80,建立關(guān)于x的方程,解方程求出x的值,再求出丙的平均數(shù)就可得到y的值.

2)根據(jù)筆試、面試、體能得分分別不得低于80分,80分,70分,因此排除應(yīng)聘者甲,再利用加權(quán)平均數(shù)分別求出乙和丙的得分,然后比較大小,就可作出判斷.

1)根據(jù)題意得:

解之:x=74;

丙的平均分為:

y=81

故答案為:74;81

2)解:甲面試成績(jī)低于80分取消錄用,

乙的得分:86×50%+80×30%+74×20%=81.8

丙的得分:80×50%+90×30%+73×20%=81.6

答:乙將被錄用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,歡歡和樂(lè)樂(lè)分別站在正方形的頂點(diǎn)和頂點(diǎn)處,歡歡以的速度走向終點(diǎn),途中位置記為點(diǎn);樂(lè)樂(lè)以的速度走向終點(diǎn),途中位置記為.假設(shè)兩人同時(shí)出發(fā),兩人都到達(dá)終點(diǎn)時(shí)結(jié)束運(yùn)動(dòng).已知正方形邊長(zhǎng)為,點(diǎn)上,.記三角形的面積為,三角形的面積為.設(shè)出發(fā)時(shí)間為

1)如圖情況,用含的代數(shù)式表示下列線段的長(zhǎng)度:

______;______; ____________;

2)如圖情況,他們出發(fā)多少秒后?

3)是否存在這樣的時(shí)刻,使得?若存在,請(qǐng)求出的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D是直線外一點(diǎn),在上取兩點(diǎn)A,B,連接AD,分別以點(diǎn)B,D為圓心,AD,AB的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)C,連接CDBC,則四邊形ABCD是平行四邊形,理由是:_________________________

.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有七個(gè)數(shù)將它們填人圖(個(gè)圓兩兩相交分成個(gè)部分)中,使得每個(gè)圓內(nèi)部的個(gè)數(shù)之積相等,設(shè)這個(gè)積為,如圖給出了一種填法,此時(shí)__________,在所有的填法中,的最大值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】馬航事件的發(fā)生引起了我國(guó)政府的高度重視,我國(guó)政府迅速派出了艦船和飛機(jī)到相關(guān)海域進(jìn)行搜尋.如圖,在一次空中搜尋中,水平飛行的飛機(jī)在點(diǎn)A處測(cè)得前方海面的點(diǎn)F處有疑似飛機(jī)殘骸的物體(該物體視為靜止),此時(shí)的俯角為30°.為了便于觀察,飛機(jī)繼續(xù)向前飛行了800m到達(dá)B點(diǎn),此時(shí)測(cè)得點(diǎn)F的俯角為45°.請(qǐng)你計(jì)算當(dāng)飛機(jī)飛臨F點(diǎn)的正上方點(diǎn)C時(shí)(點(diǎn)A,B,C在同一直線上),豎直高度CF約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將□ABCD的邊DC延長(zhǎng)至點(diǎn)E,使得CE=DC,連結(jié)AE,AC,BE,AEBC于點(diǎn)F.

1)求證:AEBC互相平分;

2)若∠AFC=2DAD=10.

①求證:四邊形ABEC是矩形;

②連結(jié)FD,則線段FD的長(zhǎng)度的取值范圍為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上, 老師要求同學(xué)們利用三角板畫(huà)兩條平行線.老師說(shuō)苗苗和小華兩位同學(xué)畫(huà)法都是正確的,兩位同學(xué)的畫(huà)法如下:

苗苗的畫(huà)法:

①將含30°角的三角尺的最長(zhǎng)邊與直線a重合,另一塊三角尺最長(zhǎng)邊與含30°角的三角尺的最短邊緊貼;

②將含30°角的三角尺沿貼合邊平移一段距離,畫(huà)出最長(zhǎng)邊所在直線b,則b//a.

小華的畫(huà)法:

①將含30°角三角尺的最長(zhǎng)邊與直線a重合,用虛線做出一條最短邊所在直線;

②再次將含30°角三角尺的最短邊與虛線重合,畫(huà)出最長(zhǎng)邊所在直線b,則b//a.

請(qǐng)?jiān)诿缑绾托∪A兩位同學(xué)畫(huà)平行線的方法中選出你喜歡的一種,并寫(xiě)出這種畫(huà)圖的依據(jù).

答:我喜歡__________同學(xué)的畫(huà)法,畫(huà)圖的依據(jù)是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

1)若△ABC和△A1B1C1關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)圖形,畫(huà)出圖形并寫(xiě)出△A1B1C1的各頂點(diǎn)的坐標(biāo);

2)將△ABC繞著點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°得到△A2B2C2,畫(huà)出圖形,求出線段CA掃過(guò)的部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD與正方形BFGE中,點(diǎn)E在邊AB上,若AE=aBE=b,(其中a2b).

1)請(qǐng)用含有ab的代數(shù)式表示圖中陰影部分的面積;

2)當(dāng)a=5cmb=3cm時(shí),求陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案