(2013•包頭)如圖,已知一條直線經(jīng)過點A(0,2)、點B(1,0),將這條直線向左平移與x軸、y軸分別交與點C、點D.若DB=DC,則直線CD的函數(shù)解析式為
y=-2x-2
y=-2x-2
分析:先求出直線AB的解析式,再根據(jù)平移的性質(zhì)求直線CD的解析式.
解答:解:設(shè)直線AB的解析式為y=kx+b,
把A(0,2)、點B(1,0)代入,
b=2
k+b=0
,解得
k=-2
b=2
,
故直線AB的解析式為y=-2x+2;
將這直線向左平移與x軸負半軸、y軸負半軸分別交于點C、點D,使DB=DC時,
因為平移后的圖形與原圖形平行,故平移以后的函數(shù)解析式為:y=-2x-2.
故答案為y=-2x-2.
點評:本題考查了一次函數(shù)圖象與幾何變換,要注意利用一次函數(shù)的特點,列出方程組,求出未知數(shù)的值從而求得其解析式;求直線平移后的解析式時要注意平移時k的值不變,只有b發(fā)生變化.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•包頭)如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE,交AC于點F.
(1)如圖①,當
CE
EB
=
1
3
時,求
S△CEF
S△CDF
的值;
(2)如圖②當DE平分∠CDB時,求證:AF=
2
OA;
(3)如圖③,當點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG=
1
2
BG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•包頭)如圖,四邊形ABCD和四邊形AEFC是兩個矩形,點B在EF邊上,若矩形ABCD和矩形AEFC的面積分別是S1、S2的大小關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•包頭)如圖,點A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,則∠ADB=
28
28
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•包頭)如圖,一根長6
3
米的木棒(AB),斜靠在與地面(OM)垂直的墻(ON)上,與地面的傾斜角(∠ABO)為60°.當木棒A端沿墻下滑至點A′時,B端沿地面向右滑行至點B′.
(1)求OB的長;
(2)當AA′=1米時,求BB′的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•包頭)如圖,已知在△ABP中,C是BP邊上一點,∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.
(1)求證:PA是⊙O的切線;
(2)過點C作CF⊥AD,垂足為點F,延長CF交AB于點G,若AG•AB=12,求AC的長;
(3)在滿足(2)的條件下,若AF:FD=1:2,GF=1,求⊙O的半徑及sin∠ACE的值.

查看答案和解析>>

同步練習冊答案