【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn)、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).
(1)如圖1,若點(diǎn)是直線上方拋物線上的一個動點(diǎn),過點(diǎn)作軸交直線于點(diǎn),作于點(diǎn),點(diǎn)為直線上一動點(diǎn),點(diǎn)為軸上一動點(diǎn),連接,.當(dāng)最長時,求的最小值;
(2)如圖2,將繞點(diǎn)逆時針旋轉(zhuǎn)得,將沿直線平移得到,直線與軸交于點(diǎn),連接,將 沿邊翻折得 ,連接, ,當(dāng)是等腰三角形時,求此時點(diǎn)的坐標(biāo).
【答案】(1) ;(2) 或 或 .
【解析】
(1)先求出A、B、C的坐標(biāo),直線BC解析式,可推出,設(shè),則,推出時取得最大值,此時最長,作直線,過點(diǎn)作于,交于,交軸于,將轉(zhuǎn)化為PK即可求值;
(2)設(shè),則,,分別表示出,,,再分別討論兩邊相等,建立方程求解.
(1)令,得或4,
令得
∴,,
BC=
設(shè)直線BC解析式為:,代入,得:
,解得
∴直線BC解析式為
∵,軸,
∴∠PDE=∠CBO
∵∠PED=∠COB=90°
∴△PDE∽△CBO
∴
∴,當(dāng)取得最大值時,線段最長.
設(shè),則
∴
∵
∴當(dāng),即時取得最大值,此時最長
作直線,過點(diǎn)作于,交于,交軸于,與y軸交于F,
易得F點(diǎn)坐標(biāo)為,
∴
∵∠OAF=∠KAN,∠AOF=∠AKN=90°
∴△AOF∽△AKN
∴,則
此時,
PK的長即為的最小值,
∵
∴設(shè)直線PK的解析式為,將代入得:
,解得,即直線PK解析式為
聯(lián)立與得:
解得,則M坐標(biāo)為
∴
即的最小值為.
(2)設(shè),則,
∵
∴
當(dāng)時,,或
當(dāng)時,,
當(dāng)時,,
∴或或
∴或或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象和反比例函數(shù)的圖象相交于兩點(diǎn).
(1)試確定一次函數(shù)與反比例函數(shù)的解析式;
(2)求的面積;
(3)結(jié)合圖象,直接寫出使成立的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+4(a≠0)與軸交于點(diǎn)B (-3 ,0) 和C (4 ,0)與軸交于點(diǎn)A.
(1) a = ,b = ;
(2) 點(diǎn)M從點(diǎn)A出發(fā)以每秒1個單位長度的速度沿AB向B運(yùn)動,同時,點(diǎn)N從點(diǎn)B出發(fā)以每秒1個單位長度的速度沿BC向C運(yùn)動,當(dāng)點(diǎn)M到達(dá)B點(diǎn)時,兩點(diǎn)停止運(yùn)動.t為何值時,以B、M、N為頂點(diǎn)的三角形是等腰三角形?
(3) 點(diǎn)P是第一象限拋物線上的一點(diǎn),若BP恰好平分∠ABC,請直接寫出此時點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家為迎接“10周年購物狂歡節(jié)”,準(zhǔn)備將編號為l號,2號,…,60號的獎券分別對應(yīng)60份獎品.現(xiàn)將獎券不均勻分配放置在,,三個抽獎盒中,若將盒中的26號獎券調(diào)換到盒,將盒中的44號獎券調(diào)換到盒,此時,、兩盒獎券的編號平均數(shù)比調(diào)換前增加了0.6,盒獎券的編號平均數(shù)比調(diào)換前增加了0.9,同時經(jīng)計(jì)算發(fā)現(xiàn),盒中編號平均數(shù)調(diào)換前低于36,調(diào)換后編號平均數(shù)卻高于36,則調(diào)換前盒中有_________張獎券.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)中的和滿足下表:
] |
(1)請直接寫出m的值為_________.
(2)求出這個二次函數(shù)的解析式.
(3)當(dāng)時,則y的取值范圍為______________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,H為射線OA上一定點(diǎn),,P為射線OB上一點(diǎn),M為線段OH上一動點(diǎn),連接PM,滿足為鈍角,以點(diǎn)P為中心,將線段PM順時針旋轉(zhuǎn),得到線段PN,連接ON.
(1)依題意補(bǔ)全圖1;
(2)求證:;
(3)點(diǎn)M關(guān)于點(diǎn)H的對稱點(diǎn)為Q,連接QP.寫出一個OP的值,使得對于任意的點(diǎn)M總有ON=QP,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級學(xué)生立定跳遠(yuǎn)水平,隨機(jī)抽取該年級50名學(xué)生進(jìn)行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
請根據(jù)圖表中所提供的信息,完成下列問題:
(1)表中________,________,樣本成績的中位數(shù)落在證明見解析________范圍內(nèi);
(2)請把頻數(shù)分布直方圖補(bǔ)充完整;
(3)該校九年級共有1000名學(xué)生,估計(jì)該年級學(xué)生立定跳遠(yuǎn)成績在范圍內(nèi)的學(xué)生有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com