【題目】已知,在下列各圖中,點(diǎn)O為直線(xiàn)AB上一點(diǎn),∠AOC=60°,直角三角板的直角頂點(diǎn)放在點(diǎn)處.
(1)如圖1,三角板一邊OM在射線(xiàn)OB上,另一邊ON在直線(xiàn)AB的下方,則∠BOC的度數(shù)為°,∠CON的度數(shù)為°;
(2)如圖2,三角板一邊OM恰好在∠BOC的角平分線(xiàn)OE上,另一邊ON在直線(xiàn)AB的下方,此時(shí)∠BON的度數(shù)為°;
(3)請(qǐng)從下列(A),(B)兩題中任選一題作答.
我選擇: .
(A)在圖2中,延長(zhǎng)線(xiàn)段NO得到射線(xiàn)OD,如圖3,則∠AOD的度數(shù)為°;∠DOC與∠BON的數(shù)量關(guān)系是∠DOC∠BON(填“>”、“=”或“<”);
(B)如圖4,MN⊥AB,ON在∠AOC的內(nèi)部,若另一邊OM在直線(xiàn)AB的下方,則∠COM+∠AON的度數(shù)為°;∠AOM﹣∠CON的度數(shù)為°.
【答案】
(1)120 ;150
(2)30°
(3)A(或B);30;=;150;30
【解析】解:(1)∵∠AOC=60°,∠BOC與∠AOC互補(bǔ),∠AON=90°
∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°.
故答案為:120;150.
⑵∵三角板一邊OM恰好在∠BOC的角平分線(xiàn)OE上,∠BOC=120°,
∴∠BOM= ∠BOC=60°,
又∵∠MON=∠BOM+∠BON=90°,
∴∠BON=90°﹣60°=30°.
故答案為:30°.
⑶(A)∵∠AOD=∠BON(對(duì)頂角),∠BON=30°,
∴∠AOD=30°,
又∵∠AOC=60°,
∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
(B)∵M(jìn)N⊥AB,
∴∠AON與∠MNO互余,
∵∠MNO=60°(三角板里面的60°角),
∴∠AON=90°﹣60°=30°,
∵∠AOC=60°,150
∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,
∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,
∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.
故答案為:A(或B);30;=;150;30.
(1)由題意可知∠AON=∠BON=90°,根據(jù)鄰補(bǔ)角的定義可求出∠BOC的度數(shù);再根據(jù)∠CON=∠AOC+∠AON,就可求出結(jié)果。
(2)根據(jù)題意角平分線(xiàn)的定義可求出∠BOE的度數(shù),再根據(jù)∠BON=90°-∠BOE,即可求出結(jié)果。
(3)(A)根據(jù)對(duì)頂角相等得出∠BON=∠AOD,就可求出∠AOD的度數(shù);再求出∠DOC的度數(shù),就可得出結(jié)論;
(B)根據(jù)已知條件求出∠AOC、∠CON、∠AON的度數(shù),再根據(jù)∠COM+∠AON,∠AOM﹣∠CON,即可求出結(jié)果。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】23 , 33 , 和43分別可以按如圖所示方式“分裂”成2個(gè)、3個(gè)和4個(gè)連續(xù)奇數(shù)的和.83也能按此規(guī)律進(jìn)行“分裂”,則83“分裂”出的奇數(shù)中最大的是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD是經(jīng)過(guò)∠BCA頂點(diǎn)C的一條直線(xiàn),CA=CB.E,F(xiàn)分別是直線(xiàn)CD上兩點(diǎn),且∠BEC=∠CFA=∠a.
(1)若直線(xiàn)CD經(jīng)過(guò)∠BCA的內(nèi)部,且E,F(xiàn)在射線(xiàn)CD上,請(qǐng)解決下面兩個(gè)問(wèn)題:
①如圖l,若∠BCA=90°,∠a=90°,則BECF;EF|BE﹣AF|(填“>”,“<”或“=”);
②如圖(2),若0°<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件 , 使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立.
(2)如圖,若直線(xiàn)CD經(jīng)過(guò)∠BCA的外部,∠α=∠BCA,請(qǐng)?zhí)岢鯡F,BE,AF三條線(xiàn)段數(shù)量關(guān)系的合理猜想(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(1)如圖,把∠AOB繞著O點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)一個(gè)角度,得∠A′OB′,指出圖中所有相等的角.
(2)如圖,BD平分∠ABC,BE分∠ABC分2:5兩部分,∠DBE=21°,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正整數(shù)按如下圖所示的規(guī)律排列,若用有序數(shù)對(duì)(m , n)表示從上到下第m行,和該行從左到右第n個(gè)數(shù),如(4,2)表示整數(shù)8,則(8,4)表示的整數(shù)是( )
A.31
B.32
C.33
D.41
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com