【題目】△ABC中,AB=AC,∠BAC=2∠DAE=2α

1)如圖1,若點D關(guān)于直線AE的對稱點為F,求證:△ADF∽△ABC

2)如圖2,在(1)的條件下,若α=45°,求證:DE2=BD2+CE2

3)如圖3,若α=45°,點EBC的延長線上,則等式DE2=BD2+CE2還能成立嗎?請說明理由.

【答案】(1)見解析;(2)見解析;(3)DE2=BD2+CE2還能成立,理由見解析.

【解析】試題分析:(1)根據(jù)軸對稱的性質(zhì)可得∠EAF=∠DAE,AD=AF,再求出∠BAC=∠DAF,然后根據(jù)兩邊對應(yīng)成比例,夾角相等兩三角形相似證明;
(2)根據(jù)軸對稱的性質(zhì)可得EF=DE,AF=AD,再求出∠BAD=∠CAF,然后利用“邊角邊”證明△ABD和△ACF全等,根據(jù)全等三角形對應(yīng)邊相等可得CF=BD,全等三角形對應(yīng)角相等可得∠ACF=∠B,然后求出∠ECF=90°,最后利用勾股定理證明即可;
(3)作點D關(guān)于AE的對稱點F,連接EF、CF,根據(jù)軸對稱的性質(zhì)可得EF=DE,AF=AD,再根據(jù)同角的余角相等求出∠BAD=∠CAF,然后利用“邊角邊”證明△ABD和△ACF全等,根據(jù)全等三角形對應(yīng)邊相等可得CF=BD,全等三角形對應(yīng)角相等可得∠ACF=∠B,然后求出∠ECF=90°,最后利用勾股定理證明即可.

試題解析:

證明:(1)∵點D關(guān)于直線AE的對稱點為F,

∴∠EAF=∠DAE,AD=AF,

又∵∠BAC=2∠DAE,

∴∠BAC=∠DAF,

∵AB=AC,

=

∴△ADF∽△ABC;

(2)∵點D關(guān)于直線AE的對稱點為F,

∴EF=DE,AF=AD,

∵α=45°,

∴∠BAD=90°﹣∠CAD,

∠CAF=∠DAE+∠EAF﹣∠CAD=45°+45°﹣∠CAD=90°﹣∠CAD,

∴∠BAD=∠CAF,

在△ABD和△ACF中,

∴△ABD≌△ACF(SAS),

∴CF=BD,∠ACF=∠B,

∵AB=AC,∠BAC=2α,α=45°,

∴△ABC是等腰直角三角形,

∴∠B=∠ACB=45°,

∴∠ECF=∠ACB+∠ACF=45°+45°=90°,

在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,

所以,DE2=BD2+CE2;

(3)DE2=BD2+CE2還能成立.

理由如下:作點D關(guān)于AE的對稱點F,連接EF、CF,

由軸對稱的性質(zhì)得,EF=DE,AF=AD,

∵α=45°,

∴∠BAD=90°﹣∠CAD,

∠CAF=∠DAE+∠EAF﹣∠CAD=45°+45°﹣∠CAD=90°﹣∠CAD,

∴∠BAD=∠CAF,

在△ABD和△ACF中,,

∴△ABD≌△ACF(SAS),

∴CF=BD,∠ACF=∠B,

∵AB=AC,∠BAC=2α,α=45°,

∴△ABC是等腰直角三角形,

∴∠B=∠ACB=45°,

∴∠ECF=∠ACB+∠ACF=45°+45°=90°,

在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,

所以,DE2=BD2+CE2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a4·a2,(-a2)3,a12+a2,a2·a3中,計算結(jié)果為a6的有(  )

A. 1 B. 2

C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點A(2,0)的兩條直線L1、L2分別交y軸于點B、C,其中點B在原點上方,點C在原點下方,已知AB=
(1)求點B的坐標(biāo);
(2)若△ABC的面積為4,請求出點C的坐標(biāo),并直接寫出直線L2所對應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在百度搜索引擎中輸入中國夢,我的夢,搜索到與之相關(guān)的結(jié)果條數(shù)為608000,這個數(shù)用科學(xué)記數(shù)法表示為(

A. 60.8×104B. 6.08×105C. 0.608×106D. 6.08×107

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數(shù)為(

A. 115° B. 120° C. 130° D. 140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間,某商場計劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品2件和乙商品3件共需270元;購進(jìn)甲商品3件和乙商品2件共需230元

(1) 求甲、乙兩種商品每件的進(jìn)價分別是多少元?

(2) 商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并確定最大利潤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,(1)如果∠1=__________,那么DEAC;(同位角相等,兩直線平行);

(2)如果∠1=__________,那么EFBC;(內(nèi)錯角相等,兩直線平行);

(3)如果DEF+__________=180°,那么DEAC;(同旁內(nèi)角互補(bǔ),兩直線平行);

(4)如果∠2+__________=180°,那么ABDF;(同旁內(nèi)角互補(bǔ),兩直線平行)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點A(2,0)的兩條直線l1 , l2分別交y軸于點B,C,其中點B在原點上方,點C在原點下方,已知AB=
(1)求點B的坐標(biāo);
(2)若△ABC的面積為4,求直線l2的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小強(qiáng)在河的一邊,要測河面的一只船B與對岸碼頭A的距離,他的做法如下:

①在岸邊確定一點C,使C與A,B在同一直線上;

②在AC的垂直方向畫線段CD,取其中點O;

③畫DFCD使F、O、A在同一直線上;

④在線段DF上找一點E,使E與O、B共線.

他說測出線段EF的長就是船B與碼頭A的距離.他這樣做有道理嗎?為什么?

查看答案和解析>>

同步練習(xí)冊答案