如圖,拋物線與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,已知點(diǎn)B的坐標(biāo)為(3,0).

(1)求a的值和拋物線的頂點(diǎn)坐標(biāo);
(2)分別連接AC、BC.在x軸下方的拋物線上求一點(diǎn)M,使△AMC與△ABC的面積相等;
(3)設(shè)N是拋物線對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),d=|AN﹣CN|.探究:是否存在一點(diǎn)N,使d的值最大?若存在,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo)和d的最大值;若不存在,請(qǐng)簡(jiǎn)單說(shuō)明理由.
(1)。拋物線的頂點(diǎn)坐標(biāo)為(﹣,)。
(2)M點(diǎn)的坐標(biāo)是(﹣9,﹣4)。
(3)在拋物線對(duì)稱(chēng)軸上存在一點(diǎn)N,能夠使d=|AN﹣CN|的值最大。理由見(jiàn)解析。

分析:(1)先把點(diǎn)B的坐標(biāo)代入,可求得a的值,再利用配方法將一般式化為頂點(diǎn)式,即可求得拋物線的頂點(diǎn)坐標(biāo)。
(2)先由拋物線的解析式,求出與x軸的交點(diǎn)A的坐標(biāo),與y軸的交點(diǎn)C的坐標(biāo),再由△AMC與△ABC的面積相等,得出這兩個(gè)三角形AC邊上的高相等,又由點(diǎn)B與點(diǎn)M都在AC的下方,得出BM∥AC,則點(diǎn)M既在過(guò)B點(diǎn)與AC平行的直線上,又在拋物線上,所以先運(yùn)用待定系數(shù)法求出直線AC的解析式為y=x+2,再設(shè)直線BM的解析式為y=x+n,將點(diǎn)B(3,0)代入,求出n的值,得到直線BM的解析式為,然后解方程組,即可求出點(diǎn)M的坐標(biāo)。
(3)連接BC并延長(zhǎng),交拋物線的對(duì)稱(chēng)軸x=﹣于點(diǎn)N,連接AN,根據(jù)軸對(duì)稱(chēng)的性質(zhì)得出AN=BN,并且根據(jù)三角形三邊關(guān)系定理得出此時(shí)d=|AN﹣CN|=|BN﹣CN|=BC最大.運(yùn)用待定系數(shù)法求出直線BC的解析式,再將x=﹣代入,求出y的值,得到點(diǎn)N的坐標(biāo),然后利用勾股定理求出d的最大值BC即可。
解:(1)∵拋物線經(jīng)過(guò)點(diǎn)B(3,0),
,解得。
。
,
∴拋物線的頂點(diǎn)坐標(biāo)為(﹣)。
(2)∵拋物線的對(duì)稱(chēng)軸為直線x=﹣,與x軸交于點(diǎn)A和點(diǎn)B,點(diǎn)B的坐標(biāo)為(3,0),
∴點(diǎn)A的坐標(biāo)為(﹣6,0)。
又∵當(dāng)x=0時(shí),y=2,∴C點(diǎn)坐標(biāo)為(0,2)。
設(shè)直線AC的解析式為y=kx+b,
,解得:。
∴直線AC的解析式為y=x+2。
∵SAMC=SABC,∴點(diǎn)B與點(diǎn)M到AC的距離相等。
又∵點(diǎn)B與點(diǎn)M都在AC的下方,∴BM∥AC。
設(shè)直線BM的解析式為y=x+n,將點(diǎn)B(3,0)代入,得×3+n=0,解得n=﹣1。
∴直線BM的解析式為
,解得,。
∴M點(diǎn)的坐標(biāo)是(﹣9,﹣4)。
(3)在拋物線對(duì)稱(chēng)軸上存在一點(diǎn)N,能夠使d=|AN﹣CN|的值最大。理由如下:
∵拋物線與x軸交于點(diǎn)A和點(diǎn)B,
∴點(diǎn)A和點(diǎn)B關(guān)于拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng)。
連接BC并延長(zhǎng),交直線x=﹣于點(diǎn)N,連接AN,則AN=BN,此時(shí)d=|AN﹣CN|=|BN﹣CN|=BC最大。

設(shè)直線BC的解析式為y=mx+t,將B(3,0),C(0,2)兩點(diǎn)的坐標(biāo)代入,
,解得:。
∴直線BC的解析式為y=x+2。,
當(dāng)x=﹣時(shí),y=-×(﹣)+2=3。
∴點(diǎn)N的坐標(biāo)為(﹣,3),d的最大值為。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2013年浙江義烏10分)小明合作學(xué)習(xí)小組在探究旋轉(zhuǎn)、平移變換.如圖△ABC,△DEF均為等腰直角三角形,各頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,2),C(2,1),D(,0),E(, 0),F(xiàn)(,).
(1)他們將△ABC繞C點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)450得到△A1B1C.請(qǐng)你寫(xiě)出點(diǎn)A1,B1的坐標(biāo),并判斷A1C和DF的位置關(guān)系;
(2)他們將△ABC繞原點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)450,發(fā)現(xiàn)旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線上.請(qǐng)你求出符合條件的拋物線解析式;
(3)他們繼續(xù)探究,發(fā)現(xiàn)將△ABC繞某個(gè)點(diǎn)旋轉(zhuǎn)45,若旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線上,則可求出旋轉(zhuǎn)后三角形的直角頂點(diǎn)P的坐標(biāo).請(qǐng)你直接寫(xiě)出點(diǎn)P的所有坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,直線y=x+4與坐標(biāo)軸分別交于A、B兩點(diǎn),過(guò)A、B兩點(diǎn)的拋物線為y=﹣x2+bx+c.點(diǎn)D為線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)D作CD⊥x軸于點(diǎn)C,交拋物線于點(diǎn)E.

(1)求拋物線的解析式.
(2)當(dāng)DE=4時(shí),求四邊形CAEB的面積.
(3)連接BE,是否存在點(diǎn)D,使得△DBE和△DAC相似?若存在,求此點(diǎn)D坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線與x軸交于A.B兩點(diǎn),與y軸交于C點(diǎn),拋物線的頂點(diǎn)為D點(diǎn),點(diǎn)A的坐標(biāo)為(﹣1,0).

(1)求D點(diǎn)的坐標(biāo);
(2)如圖1,連接AC,BD并延長(zhǎng)交于點(diǎn)E,求∠E的度數(shù);
(3)如圖2,已知點(diǎn)P(﹣4,0),點(diǎn)Q在x軸下方的拋物線上,直線PQ交線段AC于點(diǎn)M,當(dāng)∠PMA=∠E時(shí),求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交C點(diǎn),點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,3)它的對(duì)稱(chēng)軸是直線

(1)求拋物線的解析式;
(2)M是線段AB上的任意一點(diǎn),當(dāng)△MBC為等腰三角形時(shí),求M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公司在固定線路上運(yùn)輸,擬用運(yùn)營(yíng)指數(shù)Q量化考核司機(jī)的工作業(yè)績(jī).Q =" W" + 100,而W的大小與運(yùn)輸次數(shù)n及平均速度x(km/h)有關(guān)(不考慮其他因素),W由兩部分的和組成:一部分與x的平方成正比,另一部分與x的n倍成正比.試行中得到了表中的數(shù)據(jù).
次數(shù)n
2
1
速度x
40
60
指數(shù)Q
420
100
(1)用含x和n的式子表示Q;
(2)當(dāng)x = 70,Q = 450時(shí),求n的值;
(3)若n = 3,要使Q最大,確定x的值;
(4)設(shè)n = 2,x = 40,能否在n增加m%(m>0)同時(shí)x減少m%的情況下,而Q的值仍為420,若能,求出m的值;若不能,請(qǐng)說(shuō)明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2+bx﹣4與x軸交于A(4,0)、B(﹣2,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P是線段AB上一動(dòng)點(diǎn)(端點(diǎn)除外),過(guò)點(diǎn)P作PD∥AC,交BC于點(diǎn)D,連接CP.

(1)求該拋物線的解析式;
(2)當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),BP2=BD•BC;
(3)當(dāng)△PCD的面積最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)y=﹣2(x﹣5)2+3的頂點(diǎn)坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在二次函數(shù)的圖像中,若的增大而增大,則的取值范圍是
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案