【題目】如圖,BM是⊙O的直徑,四邊形ABMN是矩形,D是⊙O上的點,DC⊥AN,與AN交于點C,己知AC=15,⊙O的半徑為30,求 的長.
【答案】解:連接OD,BD,延長DC交BM于點E,
∵BM是⊙O的直徑,四邊形ABMN是矩形,D是⊙O上一點,DC⊥AN,
∴DE⊥BO,
∵AC=15cm,
∴BE=EO=15cm,
∵DO=30cm,
∴cos∠EOD= = ,
∴∠EOD=60°,
∴ = (cm).
【解析】利用矩形的性質(zhì)以及銳角三角形函數(shù)關(guān)系,得出cos∠EOD的值進而求出∠EOD的度數(shù),再利用弧長公式求出即可.
【考點精析】本題主要考查了含30度角的直角三角形和矩形的性質(zhì)的相關(guān)知識點,需要掌握在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;矩形的四個角都是直角,矩形的對角線相等才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC= ,BC=3,△DEF是邊長為a(a為小于3的常數(shù))的等邊三角形,將△DEF沿AC方向平移,使點D在線段AC上,DE∥AB,設(shè)△DEF與△ABC重疊部分的周長為T.
(1)求證:點E到AC的距離為一個常數(shù);
(2)若AD= ,當a=2時,求T的值;
(3)若點D運動到AC的中點處,請用含a的代數(shù)式表示T.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(0,2),B(2,2),C(-1,-2),拋物線F: 與直線x=-2交于點P.
(1)當拋物線F經(jīng)過點C時,求它的表達式;
(2)拋物線F上有兩點M 、N ,若-2≤ , < ,求m的取值范圍;
(3)設(shè)點P的縱坐標為 ,求 的最小值,此時拋物線F上有兩點M 、N ,
若 ≤-2,比較 與 的大小;
(4)當拋物線F與線段AB有公共點時,直接寫出m的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里裝有顏色不同的黑、白兩種顏色的球共5只,某學(xué)習小組做摸球?qū)嶒,將球攪勻后從中隨機摸出一個球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動進行中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次數(shù)m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的頻率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)請估計:當n很大時,摸到白球的頻率將會接近;(精確到0.1)
(2)試估算口袋中白種顏色的球有多少只?
(3)請畫樹狀圖或列表計算:從中先摸出一球,不放回,再摸出一球;這兩只球顏色不同的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接正三角形,弦EF經(jīng)過BC邊的中點D,且EF∥AB,若AB=8,則DE的長為( )
A. +1
B.2 ﹣2
C.2 ﹣2
D. +1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+2(m+l)x﹣m+1.以下四個結(jié)論:
①不論m取何值,圖象始終過點( ,2 );
②當﹣3<m<0時,拋物線與x軸沒有交點:
③當x>﹣m﹣2時,y隨x的增大而增大;
④當m=﹣ 時,拋物線的頂點達到最高位置.
請你分別判斷四個結(jié)論的真假,并給出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家園林公司承接了哈爾濱市平房區(qū)園林綠化工程,已知乙公司單獨完成所需要的天數(shù)是甲公司單獨完成所需天數(shù)的1.5倍,如果甲公司單獨工作10天,再由乙公司單獨工作15天,這樣就可完成整個工程的三分之二.
(1)求甲、乙兩公司單獨完成這項工程各需多少天?
(2)上級要求該工程完成的時間不得超過30天.甲、乙兩公司合作若干天后,甲公司另有項目離開,剩下的工程由乙公司單獨完成,并且在規(guī)定時間內(nèi)完成,求甲、乙兩公司合作至少多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了緩解長沙市區(qū)內(nèi)一些主要路段交通擁擠的現(xiàn)狀,交警隊在一些主要路口設(shè)立了交通路況顯示牌(如圖).已知立桿AB高度是3m,從側(cè)面D點測得顯示牌頂端C點和底端B點的仰角分別是60°和45°.求路況顯示牌BC的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點M是BC邊上的任一點,連接AM并將線段AM繞M順時針旋轉(zhuǎn)90°得到線段MN,在CD邊上取點P使CP=BM,連接NP,BP.
(1)求證:四邊形BMNP是平行四邊形;
(2)線段MN與CD交于點Q,連接AQ,若△MCQ∽△AMQ,則BM與MC存在怎樣的數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com