【題目】如圖,在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a、b滿足|a+2|+(c﹣7)2=0.
(1)a= ,b= ,c= ;
(2)若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合;
(3)點(diǎn)A、B、C開始在數(shù)軸上運(yùn)動,若點(diǎn)A以每秒1個(gè)單位長度的速度向左運(yùn)動,同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長度和4個(gè)單位長度的速度向右運(yùn)動,假設(shè)t秒鐘過后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)
(4)請問:3BC﹣2AB的值是否隨著時(shí)間t的變化而改變?若變化,請說明理由;若不變,請求其值.
【答案】(1)-2, 1,c=7;(2)4;(3)3t+3, 5t+9, 2t+6;(4)不變,3BC﹣2AB=12.
【解析】
(1)利用|a+2|+(c7)2=0,得a+2=0,c7=0,解得a,c的值,由b是最小的正整數(shù),可得b=1;
(2)先求出對稱點(diǎn),即可得出結(jié)果;
(3)AB原來的長為3,所以AB=t+2t+3=3t+3,再由AC=9,得AC=t+4t+9=5t+9,由原來BC=6,可知BC=4t2t+6=2t+6;
(4)由 3BC2AB=3(2t+6)2(3t+3)求解即可.
(1)∵|a+2|+(c7)2=0,
∴a+2=0,c7=0,
解得a=2,c=7,
∵b是最小的正整數(shù),
∴b=1;
故答案為:2;1;7.
(2)(7+2)÷2=4.5,
對稱點(diǎn)為74.5=2.5,
2.5+(2.51)=4;
故答案為:4.
(3)依題意可得AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;
故答案為:3t+3;5t+9;2t+6.
(4)不變.
3BC2AB=3(2t+6)2(3t+3)=12.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為邊長為6的等邊三角形,D,E分別在邊BC,AC上,且CD=CE=x,連接DE并延長至點(diǎn)F,使EF=AE,連接AF,CF.
(1)求證:△AEF為等邊三角形;
(2)求證:四邊形ABDF是平行四邊形;
(3)記△CEF的面積為S,
①求S與x的函數(shù)關(guān)系式;
②當(dāng)S有最大值時(shí),判斷CF與BC的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)碼專營店銷售甲、乙兩種品牌智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:
甲 | 乙 | |
進(jìn)價(jià)(元/部) | 4300 | 3600 |
售價(jià)(元/部) | 4800 | 4200 |
(1)該店銷售記錄顯示.三月份銷售甲、乙兩種手機(jī)共17部,且銷售甲種手機(jī)的利潤恰好是銷售乙種手機(jī)利潤的2倍,求該店三月份售出甲種手機(jī)和乙種手機(jī)各多少部?
(2)根據(jù)市場調(diào)研,該店四月份計(jì)劃購進(jìn)這兩種手機(jī)共20部,要求購進(jìn)乙種手機(jī)數(shù)不超過甲種手機(jī)數(shù)的,而用于購買這兩種手機(jī)的資金低于81500元,請通過計(jì)算設(shè)計(jì)所有可能的進(jìn)貨方案.
(3)在(2)的條件下,該店打算將四月份按計(jì)劃購進(jìn)的20部手機(jī)全部售出后,所獲得利潤的30%用于購買A,B兩款教學(xué)儀器捐贈給某希望小學(xué).已知購買A儀器每臺300元,購買B儀器每臺570元,且所捐的錢恰好用完,試問該店捐贈A,B兩款儀器一共多少臺?(直接寫出所有可能的結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三角形中, ,點(diǎn)是上一點(diǎn),點(diǎn)是三角形外上一點(diǎn), 且點(diǎn)為線段上一點(diǎn),連接,且.
(1)若,求的度數(shù);
(2)若,求的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)滿足:
(1)求出點(diǎn)的坐標(biāo)
(2)如圖1,連接,點(diǎn)在四邊形外面且在第一象限,再連,則,求點(diǎn)坐標(biāo).
(3)如圖2所示,為線段上一動點(diǎn),(在右側(cè))為上一動點(diǎn),使軸始終平分,連且,那么是否為定值?若為定值,請直接寫出定值,若不是,請簡單說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批發(fā)商計(jì)劃將一批海產(chǎn)品由A地運(yùn)往B地.汽車貨運(yùn)公司和鐵路貨運(yùn)公司均開辦海產(chǎn)品運(yùn)輸業(yè)務(wù).已知運(yùn)輸路程為120千米,汽車和火車的速度分別為60千米/時(shí)、100千米/時(shí).兩貨運(yùn)公司的收費(fèi)項(xiàng)目及收費(fèi)標(biāo)準(zhǔn)如下表所示:
運(yùn)輸工具 | 運(yùn)輸費(fèi)單價(jià)/ (元/噸·千米) | 冷藏費(fèi)單價(jià)/ (元/噸·小時(shí)) | 過路費(fèi)/元 | 裝卸及管理費(fèi)/元 |
汽 車 | 2 | 5 | 200 | 0 |
火 車 | 1.8 | 5 | 0 | 1600 |
注:“元/噸·千米”表示每噸貨物每千米的運(yùn)費(fèi);“元/噸·小時(shí)”表示每噸貨物每小時(shí)的冷藏費(fèi).
(1)設(shè)該批發(fā)商待運(yùn)的海產(chǎn)品有x(噸),汽車貨運(yùn)公司和鐵路貨運(yùn)公司所要收取的費(fèi)用分別為y1(元)和y2(元),試求y1、y2與x之間的函數(shù)關(guān)系式.
(2)若該批發(fā)商待運(yùn)的海產(chǎn)品不少于30噸,為節(jié)省運(yùn)費(fèi),他應(yīng)選擇哪個(gè)貨運(yùn)公司承擔(dān)運(yùn)輸業(yè)務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個(gè)角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點(diǎn)P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是( )
A. 角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上
B. 角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等
C. 三角形三條角平分線的交點(diǎn)到三條邊的距離相等
D. 以上均不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增加環(huán)保意識,某社區(qū)計(jì)劃開展一次“減碳環(huán)保,減少用車時(shí)間”的宣傳活動,對部分家庭五月份的平均每天用車時(shí)間進(jìn)行了一次抽樣調(diào)查,并根據(jù)收 集的數(shù)據(jù)繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)本次抽樣調(diào)查了多少個(gè)家庭?
(2)將圖①中的頻數(shù)分布直方圖補(bǔ)充完整;
(3)求用車時(shí)間在 1 小時(shí)~1.5 小時(shí)的部分對應(yīng)的扇 形圓心角的度數(shù);
(4)若該社區(qū)有車家庭有 1 600 個(gè),請你估計(jì)該社區(qū)用車時(shí)間不超過 1.5 小時(shí)的約有多少個(gè)家庭.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在中,三個(gè)頂點(diǎn)的坐標(biāo)分別為,將沿 軸負(fù)方向平移個(gè)單位長度,再沿軸負(fù)方向平移個(gè)單位長度,得到,其 中點(diǎn)的對應(yīng)點(diǎn)為點(diǎn),點(diǎn)的對應(yīng)點(diǎn)為點(diǎn),點(diǎn)的對應(yīng)點(diǎn)為點(diǎn)
直接寫出平移后的的頂點(diǎn)坐標(biāo):
在坐標(biāo)系中畫出平移后的
求出的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com