(2013年四川資陽(yáng)8分)在⊙O中,AB為直徑,點(diǎn)C為圓上一點(diǎn),將劣弧沿弦AC翻折交AB于點(diǎn)D,連結(jié)CD.

(1)如圖1,若點(diǎn)D與圓心O重合,AC=2,求⊙O的半徑r;

(2)如圖2,若點(diǎn)D與圓心O不重合,∠BAC=25°,請(qǐng)直接寫出∠DCA的度數(shù).

 

【答案】

解:(1)如圖,過點(diǎn)O作OE⊥AC于E,則AE=AC=×2=1。

∵翻折后點(diǎn)D與圓心O重合,∴OE=r。

在Rt△AOE中,AO2=AE2+OE2,即r2=12+(r)2

解得r=。

(2)連接BC,

∵AB是直徑,∴∠ACB=90°。

∵∠BAC=25°,∴∠B=90°﹣∠BAC=90°﹣25°=65°。

根據(jù)翻折的性質(zhì),所對(duì)的圓周角等于所對(duì)的圓周角

∴∠DCA=∠B﹣∠A=65°﹣25°=40°。

【解析】(1)過點(diǎn)O作OE⊥AC于E,根據(jù)垂徑定理可得AE=AC,再根據(jù)翻折的性質(zhì)可得OE=r,然后在Rt△AOE中,利用勾股定理列式計(jì)算即可得解。

 

(2)連接BC,根據(jù)直徑所對(duì)的圓周角是直角求出∠ACB,根據(jù)直角三角形兩銳角互余求出∠B,再根據(jù)翻折的性質(zhì)得到所對(duì)的圓周角,然后根據(jù)∠ACD等于所對(duì)的圓周角減去所對(duì)的圓周角,計(jì)算即可得解。

考點(diǎn):翻折變換(折疊問題),垂徑定理,勾股定理,圓周角定理,直角三角形兩銳角的關(guān)系。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川資陽(yáng)卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川資陽(yáng)11分)在一個(gè)邊長(zhǎng)為a(單位:cm)的正方形ABCD中,點(diǎn)E、M分別是線段AC,CD上的動(dòng)點(diǎn),連結(jié)DE并延長(zhǎng)交正方形的邊于點(diǎn)F,過點(diǎn)M作MN⊥DF于H,交AD于N.

(1)如圖1,當(dāng)點(diǎn)M與點(diǎn)C重合,求證:DF=MN;

(2)如圖2,假設(shè)點(diǎn)M從點(diǎn)C出發(fā),以1cm/s的速度沿CD向點(diǎn)D運(yùn)動(dòng),點(diǎn)E同時(shí)從點(diǎn)A出發(fā),以cm/s速度沿AC向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(t>0);

①判斷命題“當(dāng)點(diǎn)F是邊AB中點(diǎn)時(shí),則點(diǎn)M是邊CD的三等分點(diǎn)”的真假,并說明理由.

②連結(jié)FM、FN,△MNF能否為等腰三角形?若能,請(qǐng)寫出a,t之間的關(guān)系;若不能,請(qǐng)說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川資陽(yáng)卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川資陽(yáng)9分)釣魚島歷來是中國(guó)領(lǐng)土,以它為圓心在周圍12海里范圍內(nèi)均屬于禁區(qū),不允許它國(guó)船只進(jìn)入,如圖,今有一中國(guó)海監(jiān)船在位于釣魚島A正南方距島60海里的B處海域巡邏,值班人員發(fā)現(xiàn)在釣魚島的正西方向52海里的C處有一艘日本漁船,正以9節(jié)的速度沿正東方向駛向釣魚島,中方立即向日本漁船發(fā)出警告,并沿北偏西30°的方向以12節(jié)的速度前往攔截,期間多次發(fā)出警告,2小時(shí)候海監(jiān)船到達(dá)D處,與此同時(shí)日本漁船到達(dá)E處,此時(shí)海監(jiān)船再次發(fā)出嚴(yán)重警告.

(1)當(dāng)日本漁船受到嚴(yán)重警告信號(hào)后,必須沿北偏東轉(zhuǎn)向多少度航行,才能恰好避免進(jìn)入釣魚島12海里禁區(qū)?

(2)當(dāng)日本漁船不聽嚴(yán)重警告信號(hào),仍按原速度,原方向繼續(xù)前進(jìn),那么海監(jiān)船必須盡快到達(dá)距島12海里,且位于線段AC上的F處強(qiáng)制攔截漁船,問海監(jiān)船能否比日本漁船先到達(dá)F處?(注:①中國(guó)海監(jiān)船的最大航速為18節(jié),1節(jié)=1海里/小時(shí);②參考數(shù)據(jù):sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,≈1.4,≈1.7)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川資陽(yáng)卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川資陽(yáng)9分)如圖,已知直線l分別與x軸、y軸交于A,B兩點(diǎn),與雙曲線(a≠0,x>0)分別交于D、E兩點(diǎn).

(1)若點(diǎn)D的坐標(biāo)為(4,1),點(diǎn)E的坐標(biāo)為(1,4):

①分別求出直線l與雙曲線的解析式;

②若將直線l向下平移m(m>0)個(gè)單位,當(dāng)m為何值時(shí),直線l與雙曲線有且只有一個(gè)交點(diǎn)?

(2)假設(shè)點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)D為線段AB的n等分點(diǎn),請(qǐng)直接寫出b的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川資陽(yáng)卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川資陽(yáng)8分)在關(guān)于x,y的二元一次方程組中.

(1)若a=3.求方程組的解;

(2)若S=a(3x+y),當(dāng)a為何值時(shí),S有最值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案