【題目】如圖,AB是⊙O的直徑,OD垂直弦AC于點(diǎn)E,且交⊙O于點(diǎn)D,F是BA延長(zhǎng)線上一點(diǎn),若∠CDB=∠BFD.
(1)求證:FD∥AC;
(2)試判斷FD與⊙O的位置關(guān)系,并簡(jiǎn)要說(shuō)明理由;
(3)若AB=10,AC=8,求DF的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)FD是⊙O的切線,理由見(jiàn)解析;(3)DF.
【解析】
(1)因?yàn)椤?/span>CDB=∠CAB,∠CDB=∠BFD,所以∠CAB=∠BFD,即可得出FD∥AC;
(2)利用圓周角定理以及平行線的判定得出∠FDO=90°,進(jìn)而得出答案;
(3)利用垂徑定理得出AE的長(zhǎng),再利用相似三角形的判定與性質(zhì)得出FD的長(zhǎng).
解:
(1)∵∠CDB=∠CAB,∠CDB=∠BFD,
∴∠CAB=∠BFD,
∴FD∥AC,
(2)∵∠AEO=90°,FD∥AC,
∴∠FDO=90°,
∴FD是⊙O的一條切線
(3)∵AB=10,AC=8,DO⊥AC,
∴AE=EC=4,AO=5,
∴EO=3,
∵AE∥FD,
∴△AEO∽△FDO,
∴,
∴,
解得:DF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=mx+n(m≠0,且m,n為常數(shù))與雙曲線y=(k<0)在第一象限交于A,B兩點(diǎn),C,D是該雙曲線另一支上兩點(diǎn),且A、B、C、D四點(diǎn)按順時(shí)針順序排列.
(1)如圖,若m=﹣,n=,點(diǎn)B的縱坐標(biāo)為,
①求k的值;
②作線段CD,使CD∥AB且CD=AB,并簡(jiǎn)述作法;
(2)若四邊形ABCD為矩形,A的坐標(biāo)為(1,5),
①求m,n的值;
②點(diǎn)P(a,b)是雙曲線y=第一象限上一動(dòng)點(diǎn),當(dāng)S△APC≥24時(shí),則a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=mx+n與雙曲線y=相交于A(﹣1,2)、B(2,b)兩點(diǎn),與y軸相交于點(diǎn)C.
(1)求m,n的值;
(2)若點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,求△ABD的面積;
(3)在坐標(biāo)軸上是否存在異于D點(diǎn)的點(diǎn)P,使得S△PAB=S△DAB?若存在,直接寫(xiě)出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E、F是邊長(zhǎng)為4的正方形ABCD邊AD、AB上的動(dòng)點(diǎn),且AF=DE,BE交CF于點(diǎn)P,在點(diǎn)E、F運(yùn)動(dòng)的過(guò)程中,PA的最小值為( 。
A.2B.2C.4﹣2D.2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓內(nèi)接正三角形、正方形、正六邊形的邊長(zhǎng)之比為( )
A.1:2:3B.1::C.::1D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于的一元二次方程.
(1)求證:方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程有一根小于1,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根.
(1)求的取值范圍;
(2)若為正整數(shù),且該方程的兩個(gè)根都是整數(shù),求的值并求出方程的兩個(gè)整數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+3的圖象分別交x軸、y軸于點(diǎn)B、點(diǎn)C,與反比例函數(shù)的圖象在第四象限的相交于點(diǎn)P,并且PA⊥y軸于點(diǎn)A,已知A (0,﹣6),且S△CAP=18.
(1)求上述一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)設(shè)Q是一次函數(shù)y=kx+3圖象上的一點(diǎn),且滿足△OCQ的面積是△BCO面積的2倍,求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2﹣2x+3 的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C.
(1)求A、B、C的坐標(biāo);
(2)過(guò)拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G.若FG=AC,求點(diǎn)F的坐標(biāo);
(3)E(0,﹣2),連接BE.將△OBE繞平面內(nèi)的某點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到△O′B′E′,O、B、E的對(duì)應(yīng)點(diǎn)分別為O′、B′、E′.若點(diǎn)B′、E′兩點(diǎn)恰好落在拋物線上,求點(diǎn)B′的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com