【題目】如圖,在平面直角坐標系中,點A(0,b),點B(a,0),點D(2,0),其中a、b滿足, DE⊥x軸,且∠BED=∠ABO,直線AE交x軸于點C.
(1)求A、B、E三點的坐標;
(2) 若以AB為一邊在第二象限內構造等腰直角三角形△ABF,請直接寫出點F的坐標.
【答案】(1)A(0,3),B(-1,0),E(2,1),(2) (-4,1)(-3,4)(-2,2)
【解析】
(1)先根據(jù)非負數(shù)的性質求出a、b的值,進而可得出A、B兩點的坐標;由已知角相等,加上一對直角相等,且根據(jù)A,B與D的坐標確定出OA=BD,利用AAS得到△AOB與△BED全等,利用全等三角形的對應邊相等得到OB=ED,進而確定出E坐標.
(2)分∠BAF=90°,∠ABF=90°或∠AFB=90°三種情況進行討論.
解:(1)∵a、b滿足+|b-3|=0,
∴a+1=0,b-3=0,解得a=-1,b=3,
∵A(0,3),B(-1,0);
(2)∵B(-1,0),D(2,0),A(0,3),
∴OB=1,OD=2,即BD=OB+OD=1+2=3,
∴OA=BD=3,
在△ABO和△BED中,
∠AOB=∠BDE=90°,
∠ABO=∠BEO,
OA=BD,
∴△ABO≌△BED(AAS),
∴ED=OB=1,
∴E(2,1).
(2)如圖所示,當∠BAF=90°時,
過點F1作F1G⊥y軸于點G,
∵∠F1AG+∠AF1G=90°,∠F1AG+∠BAO=90°,
∴∠AF1G=∠BAO,
在△AGF1與△BOA中,
∠AF1G=∠BAO,
∠AGF1=∠BOA,
AF1=AB,
∴△AGF1≌△BOA,
∴AG=OB=1,GF1=OA=3,
∴F1(-3,4);
當∠ABF=90°時,過點F2作F2G⊥x軸于點H,
同理可得△OAB≌△HBF2,
∴BH=OA=3,F(xiàn)2H=OB=1,
∴OH=BH+OB=3+1=4,
∴F2(-4,1);
當∠AFB=90°時,設直線AB的解析式為y=kx+b(k≠0),
∵A(0,3),B(-1,0),
∴ ,解得 ,
∴直線AB的解析式為y=3x+3.
設線段AB的中點為M,則M(-, ),
設線段AB的垂直平分線l的解析式為y=-x+c(a≠0),
∴+c=,解得c=,
∴直線l的解析式為y=-x+.
設F3(x,-x+),
∵△AF3B是等腰直角三角形,AB==,
∴AF3=,
∴x2+(-x+-3)2=5,解得x=-1,
∴F3(-1,2).
綜上所述,F點的坐標為(-3,4)或(-4,1)或(-1,2).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為,C點的坐標為,點B在第一象限內,點P從原點出發(fā),以每秒2個單位長度的速度沿著的路線移動即:沿著長方形移動一周.
寫出點B的坐標______
當點P移動了4秒時,描出此時P點的位置,并求出點P的坐標.
在移動過程中,當點P到x軸距離為5個單位長度時,求點P移動的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富學生的課外活動,某校決定購買100個籃球和副羽毛球拍.經(jīng)調查發(fā)現(xiàn):甲、乙兩個體育用品商店以同樣的價格出售同種品牌的籃球和羽毛球拍.已知每個籃球比每副羽毛球拍貴25元,兩個籃球與三副羽毛球拍的費用正好相等.經(jīng)洽談,甲商店的優(yōu)惠方案是:每購買十個籃球,送一副羽毛球拍;乙商店的優(yōu)惠方案是:若購買籃球數(shù)超過80個,則購買羽毛球拍可打八折.
(1)求每個籃球和每副羽毛球拍的價格分別是多少?
(2)請用含的代數(shù)式分別表示出到甲商店和乙商店購買所花的費用;
(3)請你決策:在哪家商店購買劃算?(直接寫出結論)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy,直線y=x﹣1與y軸交于點A,與雙曲線y= 交于點B(m,2)
(1)求點B的坐標及k的值;
(2)將直線AB平移,使它與x軸交于點C,與y軸交于點D,若△ABC的面積為6,求直線CD的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB∥DF,∠D+∠B=180°,
(1)求證:DE∥BC;
(2)如果∠AMD=75°,求∠AGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OE⊥AB于O,若∠BOD=40°,則不正確的結論是( )
A.∠AOC=40° B.∠COE=130° C.∠EOD=40° D.∠BOE=90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把 個邊長為1的正方形拼接成一排,求得 , , ,計算 , ……按此規(guī)律,寫出 (用含 的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是小強洗漱時的側面示意圖,洗漱臺(矩形 )靠墻擺放,高 ,寬 ,小強身高 ,下半身 ,洗漱時下半身與地面成 ( ),身體前傾成 ( ),腳與洗漱臺距離 (點 , , , 在同一直線上).
(1)此時小強頭部 點與地面 相距多少?
(2)小強希望他的頭部 恰好在洗漱盆 的中點 的正上方,他應向前或后退多少?
( , , ,結果精確到 )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為(4,0),C點的坐標為(0,6),點B在第一象限內,點P從原點出發(fā),以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的路線移動(即:沿著長方形移動一周).
(1)寫出B點的坐標();
(2)當點P移動了4秒時,描出此時P點的位置,并寫出點P的坐標.
(3)在移動過程中,當點P到x軸距離為5個單位長度時,求點P移動的時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com