【題目】如圖,銳角三角形ABC中,BC>AB>AC,甲、乙兩人想找一點P,使得∠BPC與∠A互補,其作法分別如下:

(甲)以A為圓心,AC長為半徑畫弧交ABP點,則P即為所求;

(乙)作過B點且與AB垂直的直線l,作過C點且與AC垂直的直線,交lP點,則P即為所求.

對于甲、乙兩人的作法,下列敘述何者正確?( )

A. 兩人皆正確 B. 兩人皆錯誤

C. 甲正確,乙錯誤 D. 甲錯誤,乙正確

【答案】D

【解析】甲:根據(jù)作圖可得AC=AP,利用等邊對等角得:∠APC=ACP,由平角的定義可知:∠BPC+APC=180°,根據(jù)等量代換可作判斷;

乙:根據(jù)四邊形的內角和可得:∠BPC+A=180°.

甲:如圖1,

AC=AP,

∴∠APC=ACP,

∵∠BPC+APC=180°

∴∠BPC+ACP=180°,

∴甲錯誤;

乙:如圖2,

ABPB,ACPC,

∴∠ABP=ACP=90°,

∴∠BPC+A=180°,

∴乙正確,

故選:D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在網(wǎng)格中,小正方形邊長為a,則圖中是直角三角形的是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】任何一個有理數(shù)都能寫成分數(shù)的形式(整數(shù)可以看作是分母為1的分數(shù)).我們知道:012可以寫0123可以寫成,因此,有限小數(shù)是有理數(shù)那么無限循環(huán)小數(shù)是有理數(shù)嗎?下面以循環(huán)小數(shù)261545454…= 為例,進行探索:

x=,①

兩邊同乘以100得:100x=,②

②-①得:99x=26154-=25893,

x=

因此, 是有理數(shù).

1)直接用分數(shù)表示循環(huán)小數(shù)=______.

2)試說明 是一個有理數(shù),即能用一個分數(shù)表示.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知甲、乙兩袋中各裝有若干顆球,其種類與數(shù)量如表所示今阿馮打算從甲袋中抽出一顆球,小潘打算從乙袋中抽出一顆球,若甲袋中每顆球被抽出的機會相等,且乙袋中每顆球被抽出的機會相等,則下列敘述何者正確?( )

甲袋

乙袋

紅球

2

4

黃球

2

2

綠球

1

4

總計

5

10

A. 阿馮抽出紅球的機率比小潘抽出紅球的機率大

B. 阿馮抽出紅球的機率比小潘抽出紅球的機率小

C. 阿馮抽出黃球的機率比小潘抽出黃球的機率大

D. 阿馮抽出黃球的機率比小潘抽出黃球的機率小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,O為△ABC的三條角平分線的交點,ODBC,OEACOFAB,點DE、F分別是垂足,且AB10cm,BC8cmCA6cm,則點O到邊AB的距離為(  )

A. 2cmB. 3cmC. 4cmD. 5cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1CE平分∠ACD,AE平分∠BAC,∠EAC+ACE=90°

1)請判斷ABCD的位置關系并說明理由;

2)如圖,在(1)的結論下,P為線段AC上一定點,點Q為直線CD上一動點,當點Q在射線CD上運動時(點C除外)∠CPQ+CQP與∠BAC有何數(shù)量關系? (直接寫出結論)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個點從數(shù)軸上的原點開始,先向左移動2cm到達A點,再向左移動3cm到達B點,然后向右移動9cm到達C點。

(1)1個單位長度表示1cm,請你在數(shù)軸上表示出A. B. C三點的位置;

(2)把點C到點A的距離記為CA,則CA=______cm.

(3)若點B以每秒2cm的速度向左移動,同時A. C點分別以每秒1cm4cm的速度向右移動。設移動時間為t秒,試探索:CAAB的值是否會隨著t的變化而改變?請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ADBC,EF垂直平分AC,交AC于點F,交BC于點E,且BD=DE

1)若C=40°,求BAD的度數(shù);

2)若AC=5,DC=4,求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)因式分解:-28m3n2+42m2n3-14m2n

2)因式分解:9a2x-y+4b2y-x

3)求不等式的負整數(shù)解

4)解不等式組,把它們的解集在數(shù)軸上表示出來.

查看答案和解析>>

同步練習冊答案