【題目】如圖在中,的中線,上的動點,是邊上動點,則的最小值為______________

【答案】

【解析】

E關(guān)于AD的對稱點M,連接CMADF,連接EF,過CCNABN,根據(jù)等腰三角形三線合一得出BD的長和ADBC,再利用勾股定理求出AD,利用等面積法結(jié)合垂線段最短進(jìn)一步求出最小值即可.

如圖,作E關(guān)于AD的對稱點M,連接CMADF,連接EF,過CCNABN,

AB=AC=13,BC=10,AD是△ABC的中線,

BD=DC=5,ADBC,AD平分∠BAC,

MAB上,

RtABD中,由勾股定理可得:

AD=

,

,

E關(guān)于AD的對稱點M,

EF=FM

CF+EF=CF+FM=CM,

根據(jù)垂線段最短可得:CM≥CN,

即:CF+EF≥,

CF+EF的最小值為:,

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點的外角平分線上一點,且滿足,過點于點,的延長線于點,則下列結(jié)論:①;②;③;④.其中正確的結(jié)論有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某村的居民自來水管道需要改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成,若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍,如果由甲、乙兩隊先合做天,那么余下的工程由甲隊單獨完成還需5天.設(shè)這項工程的規(guī)定時間是x天,則根據(jù)題意,下面所列方程正確的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD 是平行四邊形,AB=c,AC=b,BC=a,拋物線 y=ax2+bx﹣c x 軸的一個交點為(m,0).

(1)若四邊形ABCD是正方形,求拋物線y=ax2+bx﹣c的對稱軸;

(2) m=c,ac﹣4b<0,且 a,b,c為整數(shù),求四邊形 ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線Ly=﹣x+2x軸、y軸分別交于AB兩點,在y軸上有一點C(0,4),動點MA點以每秒1個單位的速度沿x軸向左移動.

1)求A、B兩點的坐標(biāo);

2)求COM的面積SM的移動時間t之間的函數(shù)關(guān)系式;

3)當(dāng)t為何值時COM≌△AOB,請直接寫出此時t值和M點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖(1),已知:在三角形中,,,直線經(jīng)過點,直線直線,垂足分別為點,試寫出線段之間的數(shù)量關(guān)系為_________________

2)思考探究:如圖(2),將圖(1)中的條件改為:在, 三點都在直線上,并且,其中為任意銳角或鈍角.請問(1)中結(jié)論還是否成立?若成立,請給出證明;若不成立,請說明理由.

3)拓展應(yīng)用:如圖(3),三點所在直線上的兩動點,(三點互不重合),點平分線上的一點,且均為等邊三角形,連接,若,試判斷的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系xOy,A(4,0)、B(0,3)、C(4,3),I是△ABC的內(nèi)心將△ABC繞原點逆時針旋轉(zhuǎn)90°,I的對應(yīng)點I′的坐標(biāo)為( )

A. (-2,3) B. (-3,2) C. (3,-2) D. (2,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉淇同學(xué)要證明命題兩組對邊分別相等的四邊形是平行四邊形是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.

已知:如圖1,在四邊形ABCD中,BC=AD,AB=

求證:四邊形ABCD 四邊形.

(1)在方框中填空,以補全已知和求證;

(2)按嘉淇同學(xué)的思路寫出證明過程;

(3)用文字?jǐn)⑹鏊C命題的逆命題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點C順時針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.

(1)求證:四邊形ABEF是平行四邊形;

(2)當(dāng)∠ABC為多少度時,四邊形ABEF為矩形?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案