【題目】如圖,在⊙O中,AB是直徑,AD是弦,∠ADE = 60°,∠C = 30°.
⑴判斷直線CD是否是⊙O的切線,并說明理由;
⑵若CD = ,求BC的長.
【答案】(1)CD是⊙O的切線.
證明:如圖,連接OD.
∵∠ADE=60°,∠C=30°,∴∠A=30°.
∵OA=OD,∴∠ODA=∠A=30°.
∴∠ODE=∠ODA+∠ADE=30°+60°=90°,∴OD⊥CD.
∴CD是⊙O的切線.
(2)解:在Rt△ODC中,∠ODC=90°, ∠C=30°, CD=.
∵tanC=,
∴OD=CD·tanC=×=3.
∴OC=2OD =6.
∵OB=OD=3,∴BC=OC-OB=6-3=3.
【解析】(1)根據(jù)切線的判定定理,連接OD,只需證明OD⊥CD,根據(jù)三角形的外角的性質(zhì)得∠A=30°,再根據(jù)等邊對等角得∠ADO=∠A,從而證明結(jié)論;
(2)在30°的直角三角形OCD中,求得OD,OC的長,則BC=OC-OB.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,公路為東西走向,在點(diǎn)北偏東方向上,距離千米處是村莊,在點(diǎn)北偏東方向上,距離千米處是村莊;要在公路旁修建一個(gè)土特產(chǎn)收購站(取點(diǎn)在上),使得,兩村莊到站的距離之和最短,請?jiān)趫D中作出的位置(不寫作法)并計(jì)算:
(1),兩村莊之間的距離;
(2)到、距離之和的最小值.(參考數(shù)據(jù):sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75計(jì)算結(jié)果保留根號.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E,F分別為BC,AB中點(diǎn),連接FC,AE,且AE與FC交于點(diǎn)G,AE的延長線與DC的延長線交于點(diǎn)N.
(1)求證:△ABE≌△NCE;
(2)若AB=3n,FB=GE,試用含n的式子表示線段AN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校要開展校園文化藝術(shù)節(jié)活動,為了合理編排節(jié)目,對學(xué)生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進(jìn)行了一次隨機(jī)抽樣調(diào)查(每名學(xué)生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下不完整統(tǒng)計(jì)圖.
請你根據(jù)圖中信息,回答下列問題:
(1)本次共調(diào)查了 名學(xué)生.
(2)在扇形統(tǒng)計(jì)圖中,“歌曲”所在扇形的圓心角等于 度.
(3)補(bǔ)全條形統(tǒng)計(jì)圖(標(biāo)注頻數(shù)).
(4)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛小品的人數(shù)為 人.
(5)九年一班和九年二班各有2名學(xué)生擅長舞蹈,學(xué)校準(zhǔn)備從這4名學(xué)生中隨機(jī)抽取2名學(xué)生參加舞蹈節(jié)目的編排,那么抽取的2名學(xué)生恰好來自同一個(gè)班級的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線上部分點(diǎn)的橫坐標(biāo),縱坐標(biāo)的對應(yīng)值如下表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
小聰觀察上表,得出下面結(jié)論:①拋物線與x軸的一個(gè)交點(diǎn)為(3,0); ②函數(shù)的最大值為6;③拋物線的對稱軸是;④在對稱軸左側(cè),y隨x增大而增大.其中正確有( )
A. ①② B. ①③ C. ①②③ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠A=60°,AB=6厘米,BC=12厘米,點(diǎn)P、Q同時(shí)從 頂點(diǎn)A出發(fā),點(diǎn)P沿A→B→C→D方向以2厘米/秒的速度前進(jìn),點(diǎn)Q沿A→D方向以1厘米/秒的速度前進(jìn),當(dāng)Q到達(dá)點(diǎn)D時(shí),兩個(gè)點(diǎn)隨之停止運(yùn)動.設(shè)運(yùn)動時(shí)間為x秒,P、Q經(jīng)過的路徑與線段PQ圍成的圖形的面積為y(cm2),則y與x的函數(shù)圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(-2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動點(diǎn).
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P運(yùn)動到什么位置時(shí),△PAB的面積有最大值?
(3)過點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過點(diǎn)P做PE∥x軸交拋物線于點(diǎn)E,連結(jié)DE,請問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(–1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(–3,0)和(–2,0)之間,其部分圖象如下圖,則以下結(jié)論:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)為( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是一元二次方程x2﹣3x+1=0的兩實(shí)數(shù)根,則的值是( )
A. ﹣7B. ﹣1C. 1D. 7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com