【題目】已知:如圖,在矩形中,,,那么等于(

A. 60°B. 45°C. 30°D. 22.5°

【答案】C

【解析】

根據(jù)四邊形ABCD是矩形,得出OD=OC=OA=OC,設AE=x,CE=3x,得出OC=OA=2x,OE=x,最后根據(jù)DEAC和線段垂直平分線的性質(zhì)得出AOD是等邊三角形,即可求出∠BDC=30°

解:∵四邊形ABCD是矩形,
OD=OC=OA=OC,
AE=x,則CE=3xAC=4x,
OC=OD=OA=2x,
OE= CE - OC =x=AE,
DEAC

DEAE的垂直平分線,OD=AD=2x=OA,
∴△AOD是等邊三角形,
∴∠ADO=60°,

=ADC-ADO=90°- 60°=30°,

故選:C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】春雨初歇,綠意蔥蘢,重慶南開(融僑)中學初2020級舉行了春天的贊禮為主題的合唱比賽,各班演唱歌曲的曲風有:青春舞曲、經(jīng)典名曲、動漫神曲、勵志金曲四種類型,為了了解同學們對各種曲風的喜愛程度。校學生處對大眾評委喜愛的歌曲曲風進行了調(diào)查,(A喜愛青春舞曲、B喜愛經(jīng)典名曲、C喜愛動漫神曲、D喜愛勵志金曲),先根據(jù)調(diào)查得到如下圖不完整的統(tǒng)計圖,請結(jié)合圖中信息完成下列問題:

扇形統(tǒng)計圖中C喜愛動漫神曲對應扇形圓心角為1度,并補全條形統(tǒng)計圖.

在此次比賽中,甲班演唱的《四季問候》和乙班演唱的《東方之珠》獲得一等獎,《司機問候》由2名男生和2名女生領唱,《東方之珠》由1名男生和2名女生領唱,校學生處打算分別從這兩首歌曲的領唱中任意選取1名同學參加校合唱團,請用畫樹狀圖或列表的方法求出恰好選到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,①四邊形ABCD是平行四邊形,線段EF分別交AD、AC、BC于點E、O、F,②EF⊥AC,③AO=CO.

(1)求證:四邊形AFCE是平行四邊形;

(2)在本題①②③三個已知條件中,去掉一個條件,(1)的結(jié)論依然成立,這個條件是 (直接寫出這個條件的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩輛汽車分別在相距180千米的A、B兩地相向而行,甲車每小時比乙車每小時快20千米,甲車在乙車出發(fā)2小時后出發(fā),甲車出發(fā)1小時兩車相遇。

1)求甲、乙兩車的速度各是多少?

2)甲、乙兩車各自到達目的地后都立即返回,問甲車從A地出發(fā)多長時間甲、乙兩車 相距20千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列給出的條件中,能判定四邊形為平行四邊形的是(

A. B.

C. D. A=∠B,∠C=∠D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,正方形ABCO的點B坐標(3,3),點A、C分別在y軸、x軸上,對角線AC上一動點E,連接BE,過E作DEBE交OC于點D.若點D坐標為(2,0),則點E坐標為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,且AB=AC.延長BC到點D,使CD=CA,連接AD交⊙O于點E.

(1)求證:△ABE≌△CDE;

(2)填空:

①當∠ABC的度數(shù)為 時,四邊形AOCE是菱形;

②若AE=6,BE=8,則EF的長為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DABAC2=ABAD,ADC=90°,EAB的中點.

1)求證:ADC∽△ACB;

2CEAD有怎樣的位置關(guān)系?試說明理由;

3)若AD=4AB=6,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某客運站行車時刻表如圖,若全程保持勻速行駛,則當快車出發(fā)______小時后,兩車相距25km.

哈爾濱長春

出發(fā)時間

到站時間

里程(km

普通車

7:00

11:00

300

快車

7:30

10:30

300

查看答案和解析>>

同步練習冊答案