解:(1)用直尺和圓規(guī)作圖,作圖痕跡清晰;
(2)△ABP
1≌△ADP,且△ABP
1可看成是由△ADP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°而得.
理由如下:在△ABP
1和△ADP中,
由題意:AB=AD,AP=AP
1,∠PAD=∠P
1AB,
∴△ABP
1≌△ADP,
又∵△ABP
1和△ADP有公共頂點(diǎn)A,且∠PAP
1=90°,
∴△ABP
1可看成是由△ADP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°而得;
(3)點(diǎn)P(1,1)關(guān)于點(diǎn)A(0,4)左轉(zhuǎn)彎運(yùn)動(dòng)到P
1(-3,3),
點(diǎn)P
1(-3,3)關(guān)于點(diǎn)B(-4,4)左轉(zhuǎn)彎運(yùn)動(dòng)到點(diǎn)P
2(-5,3),
點(diǎn)P
2(-5,3)關(guān)于點(diǎn)C(-4,0)左轉(zhuǎn)彎運(yùn)動(dòng)到點(diǎn)P
3(-1,1),
點(diǎn)P
3(-1,1)關(guān)于點(diǎn)D(0,0)左轉(zhuǎn)彎運(yùn)動(dòng)到點(diǎn)P
4(1,1),
點(diǎn)P
4(1,1)關(guān)于點(diǎn)A(0,4)左轉(zhuǎn)彎運(yùn)動(dòng)到點(diǎn)P
5(-3,3),
點(diǎn)P
5與點(diǎn)P
1重合,點(diǎn)P
6與點(diǎn)P
2重合,點(diǎn)P
2009的坐標(biāo)為(-3,3)
點(diǎn)P
2010的坐標(biāo)為(-5,3).
分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)與“左轉(zhuǎn)彎運(yùn)動(dòng)”的定義,即可知首先作∠BAP
1=∠DAP,然后截取AP
1=AP即可求得P
1;
(2)由旋轉(zhuǎn)的性質(zhì),即可得AB=AD,AP=AP
1,∠PAD=∠P
1AB,則可證得△ABP
1≌△ADP,又由△ABP
1和△ADP有公共頂點(diǎn)A,且∠PAP
1=90°,即可得△ABP
1可看成是由△ADP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°而得;
(3)由題意,即可求得P
1,P
2,P
3,P
4的坐標(biāo),即可得規(guī)律:各點(diǎn)的坐標(biāo)每四次一循環(huán),即可求得P
4、P
2009、P
2010三點(diǎn)的坐標(biāo).
點(diǎn)評(píng):此題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定.此題考查了學(xué)生的動(dòng)手能力,此題難度適中,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用與找到規(guī)律:各點(diǎn)的坐標(biāo)每四次一循環(huán).